opm-core/opm/core/props/pvt/SinglePvtConstCompr.hpp

307 lines
11 KiB
C++

/*
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SINGLEPVTCONSTCOMPR_HEADER_INCLUDED
#define OPM_SINGLEPVTCONSTCOMPR_HEADER_INCLUDED
#include <opm/core/props/pvt/SinglePvtInterface.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/parser/eclipse/Utility/PvtwTable.hpp>
#include <opm/parser/eclipse/Utility/PvdcoTable.hpp>
#include <vector>
#include <algorithm>
namespace Opm
{
/// Class for constant compressible phases (PVTW or PVCDO).
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
class SinglePvtConstCompr : public SinglePvtInterface
{
public:
typedef std::vector<std::vector<double> > table_t;
SinglePvtConstCompr(const table_t& pvtw)
{
const int region_number = 0;
if (pvtw.size() != 1) {
OPM_THROW(std::runtime_error, "More than one PVD-region");
}
ref_press_ = pvtw[region_number][0];
ref_B_ = pvtw[region_number][1];
comp_ = pvtw[region_number][2];
viscosity_ = pvtw[region_number][3];
visc_comp_ = pvtw[region_number][4];
}
SinglePvtConstCompr(const Opm::PvtwTable &pvtwTable)
{
if (pvtwTable.numRows() != 1)
OPM_THROW(std::runtime_error,
"The table specified by the PVTW keyword is required"
"to exhibit exactly one row.");
ref_press_ = pvtwTable.getPressureColumn()[0];
ref_B_ = pvtwTable.getFormationFactorColumn()[0];
comp_ = pvtwTable.getCompressibilityColumn()[0];
viscosity_ = pvtwTable.getViscosityColumn()[0];
visc_comp_ = pvtwTable.getViscosibilityColumn()[0];
}
SinglePvtConstCompr(const Opm::PvdcoTable &pvdcoTable)
{
if (pvdcoTable.numRows() != 1)
OPM_THROW(std::runtime_error,
"The table specified by the PVDCO keyword is required"
"to exhibit exactly one row.");
ref_press_ = pvdcoTable.getPressureColumn()[0];
ref_B_ = pvdcoTable.getFormationFactorColumn()[0];
comp_ = pvdcoTable.getCompressibilityColumn()[0];
viscosity_ = pvdcoTable.getViscosityColumn()[0];
visc_comp_ = pvdcoTable.getViscosibilityColumn()[0];
}
SinglePvtConstCompr(double visc)
: ref_press_(0.0),
ref_B_(1.0),
comp_(0.0),
viscosity_(visc),
visc_comp_(0.0)
{
}
virtual ~SinglePvtConstCompr()
{
}
virtual void mu(const int n,
const double* p,
const double* /*z*/,
double* output_mu) const
{
if (visc_comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = -visc_comp_*(p[i] - ref_press_);
output_mu[i] = viscosity_/(1.0 + x + 0.5*x*x);
}
} else {
std::fill(output_mu, output_mu + n, viscosity_);
}
}
virtual void mu(const int n,
const double* p,
const double* /*r*/,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
if (visc_comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = -visc_comp_*(p[i] - ref_press_);
double d = (1.0 + x + 0.5*x*x);
output_mu[i] = viscosity_/d;
output_dmudp[i] = (viscosity_/(d*d))*(1+x) * visc_comp_;
}
} else {
std::fill(output_mu, output_mu + n, viscosity_);
std::fill(output_dmudp, output_dmudp + n, 0.0);
}
std::fill(output_dmudr, output_dmudr + n, 0.0);
}
virtual void mu(const int n,
const double* p,
const double* /*r*/,
const PhasePresence* /*cond*/,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
if (visc_comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = -visc_comp_*(p[i] - ref_press_);
double d = (1.0 + x + 0.5*x*x);
output_mu[i] = viscosity_/d;
output_dmudp[i] = (viscosity_/(d*d))*(1+x) * visc_comp_;
}
} else {
std::fill(output_mu, output_mu + n, viscosity_);
std::fill(output_dmudp, output_dmudp + n, 0.0);
}
std::fill(output_dmudr, output_dmudr + n, 0.0);
}
virtual void B(const int n,
const double* p,
const double* /*z*/,
double* output_B) const
{
if (comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = comp_*(p[i] - ref_press_);
output_B[i] = ref_B_/(1.0 + x + 0.5*x*x);
}
} else {
std::fill(output_B, output_B + n, ref_B_);
}
}
virtual void dBdp(const int n,
const double* p,
const double* /*z*/,
double* output_B,
double* output_dBdp) const
{
if (comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
double x = comp_*(p[i] - ref_press_);
double d = (1.0 + x + 0.5*x*x);
output_B[i] = ref_B_/d;
output_dBdp[i] = (-ref_B_/(d*d))*(1 + x) * comp_;
}
} else {
std::fill(output_B, output_B + n, ref_B_);
std::fill(output_dBdp, output_dBdp + n, 0.0);
}
}
virtual void b(const int n,
const double* p,
const double* /*r*/,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
if (comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = comp_*(p[i] - ref_press_);
double d = (1.0 + x + 0.5*x*x);
// b = 1/B = d/ref_B_B;
output_b[i] = d/ref_B_;
output_dbdp[i] = (1 + x) * comp_/ref_B_;
}
} else {
std::fill(output_b, output_b + n, 1/ref_B_);
std::fill(output_dbdp, output_dbdp + n, 0.0);
}
std::fill(output_dbdr, output_dbdr + n, 0.0);
}
virtual void b(const int n,
const double* p,
const double* /*r*/,
const PhasePresence* /*cond*/,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
if (comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = comp_*(p[i] - ref_press_);
double d = (1.0 + x + 0.5*x*x);
// b = 1/B = d/ref_B_B;
output_b[i] = d/ref_B_;
output_dbdp[i] = (1 + x) * comp_/ref_B_;
}
} else {
std::fill(output_b, output_b + n, 1/ref_B_);
std::fill(output_dbdp, output_dbdp + n, 0.0);
}
std::fill(output_dbdr, output_dbdr + n, 0.0);
}
virtual void rsSat(const int n,
const double* /*p*/,
double* output_rsSat,
double* output_drsSatdp) const
{
std::fill(output_rsSat, output_rsSat + n, 0.0);
std::fill(output_drsSatdp, output_drsSatdp + n, 0.0);
}
virtual void rvSat(const int n,
const double* /*p*/,
double* output_rvSat,
double* output_drvSatdp) const
{
std::fill(output_rvSat, output_rvSat + n, 0.0);
std::fill(output_drvSatdp, output_drvSatdp + n, 0.0);
}
virtual void R(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_R) const
{
std::fill(output_R, output_R + n, 0.0);
}
virtual void dRdp(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_R,
double* output_dRdp) const
{
std::fill(output_R, output_R + n, 0.0);
std::fill(output_dRdp, output_dRdp + n, 0.0);
}
private:
double ref_press_;
double ref_B_;
double comp_;
double viscosity_;
double visc_comp_;
};
}
#endif // OPM_SINGLEPVTCONSTCOMPR_HEADER_INCLUDED