727 lines
20 KiB
C++
727 lines
20 KiB
C++
/*
|
|
MonotCubicInterpolator
|
|
Copyright (C) 2006 Statoil ASA
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
/**
|
|
@file MonotCubicInterpolator.C
|
|
@brief Represents one dimensional function f with single valued argument x
|
|
|
|
Class to represent a one-dimensional function with single-valued
|
|
argument. Cubic interpolation, preserving the monotonicity of the
|
|
discrete known function values
|
|
|
|
@see MonotCubicInterpolator.h for further documentation.
|
|
|
|
*/
|
|
|
|
|
|
#include "MonotCubicInterpolator.hpp"
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <cmath>
|
|
|
|
using namespace std;
|
|
|
|
/*
|
|
|
|
SOME DISCUSSION ON DATA STORAGE:
|
|
|
|
Internal data structure of points and values:
|
|
|
|
vector(s):
|
|
- Easier coding
|
|
- Faster vector operations when setting up derivatives.
|
|
- sorting slightly more complex.
|
|
- insertion of further values bad.
|
|
|
|
vector<double,double>
|
|
- easy sorting
|
|
- code complexity almost as for map.
|
|
- insertion of additional values bad
|
|
|
|
vector over struct datapoint { x, f, d}
|
|
- nice code
|
|
- not as sortable, insertion is cumbersome.
|
|
|
|
** This is used currently: **
|
|
map<double, double> one for (x,f) and one for (x,d)
|
|
- Naturally sorted on x-values (done by the map-construction)
|
|
- Slower to set up, awkward loop coding (?)
|
|
- easy to add more points.
|
|
- easier to just add code to linear interpolation code
|
|
- x-data is duplicated, but that memory waste is
|
|
unlikely to represent a serious issue.
|
|
|
|
map<double, <double, double> >
|
|
- naturally couples x-value, f-value and d-value
|
|
- even more unreadable(??) code?
|
|
- higher skills needed by programmer.
|
|
|
|
|
|
MONOTONE CUBIC INTERPOLATION:
|
|
|
|
It is a local algorithm. Adding one point only incur recomputation
|
|
of values in a neighbourhood of the point (in the interval getting
|
|
divided).
|
|
|
|
NOTE: We do not currently make use of this local fact. Upon
|
|
insertion of a new data pair, everything is recomputed. Revisit
|
|
this when needed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
MonotCubicInterpolator::
|
|
MonotCubicInterpolator(const vector<double> & x, const vector<double> & f) {
|
|
if (x.size() != f.size()) {
|
|
throw("Unable to constuct MonotCubicInterpolator from vectors.") ;
|
|
}
|
|
|
|
// Add the contents of the input vectors to our map of values.
|
|
vector<double>::const_iterator posx, posf;
|
|
for (posx = x.begin(), posf = f.begin(); posx != x.end(); ++posx, ++posf) {
|
|
data[*posx] = *posf ;
|
|
}
|
|
|
|
computeInternalFunctionData();
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
MonotCubicInterpolator::
|
|
read(const std::string & datafilename, int xColumn, int fColumn)
|
|
{
|
|
data.clear() ;
|
|
ddata.clear() ;
|
|
|
|
ifstream datafile_fs(datafilename.c_str());
|
|
if (!datafile_fs) {
|
|
return false ;
|
|
}
|
|
|
|
string linestring;
|
|
while (!datafile_fs.eof()) {
|
|
getline(datafile_fs, linestring);
|
|
|
|
// Replace commas with space:
|
|
string::size_type pos = 0;
|
|
while ( (pos = linestring.find(",", pos)) != string::npos ) {
|
|
// cout << "Found comma at position " << pos << endl;
|
|
linestring.replace(pos, 1, " ");
|
|
pos++;
|
|
}
|
|
|
|
stringstream strs(linestring);
|
|
int columnindex = 0;
|
|
std::vector<double> value;
|
|
if (linestring.size() > 0 && linestring.at(0) != '#') {
|
|
while (!(strs.rdstate() & std::ios::failbit)) {
|
|
double tmp;
|
|
strs >> tmp;
|
|
value.push_back(tmp);
|
|
columnindex++;
|
|
}
|
|
}
|
|
if (columnindex >= (max(xColumn, fColumn))) {
|
|
data[value[xColumn-1]] = value[fColumn-1] ;
|
|
}
|
|
}
|
|
datafile_fs.close();
|
|
|
|
if (data.size() == 0) {
|
|
return false ;
|
|
}
|
|
|
|
computeInternalFunctionData();
|
|
return true ;
|
|
}
|
|
|
|
|
|
void
|
|
MonotCubicInterpolator::
|
|
addPair(double newx, double newf) throw(const char*) {
|
|
if (std::isnan(newx) || std::isinf(newx) || std::isnan(newf) || std::isinf(newf)) {
|
|
throw("MonotCubicInterpolator: addPair() received inf/nan input.");
|
|
}
|
|
data[newx] = newf ;
|
|
|
|
// In a critical application, we should only update the
|
|
// internal function data for the offended interval,
|
|
// not for all function values over again.
|
|
computeInternalFunctionData();
|
|
}
|
|
|
|
|
|
double
|
|
MonotCubicInterpolator::
|
|
evaluate(double x) const throw(const char*){
|
|
|
|
if (std::isnan(x) || std::isinf(x)) {
|
|
throw("MonotCubicInterpolator: evaluate() received inf/nan input.");
|
|
}
|
|
|
|
// xf becomes the first (xdata,fdata) pair where xdata >= x
|
|
map<double,double>::const_iterator xf_iterator = data.lower_bound(x);
|
|
|
|
// First check if we must extrapolate:
|
|
if (xf_iterator == data.begin()) {
|
|
if (data.begin()->first == x) { // Just on the interval limit
|
|
return data.begin()->second;
|
|
}
|
|
else {
|
|
// Constant extrapolation (!!)
|
|
return data.begin()->second;
|
|
}
|
|
}
|
|
if (xf_iterator == data.end()) {
|
|
// Constant extrapolation (!!)
|
|
return data.rbegin()->second;
|
|
}
|
|
|
|
|
|
// Ok, we have x_min < x < x_max
|
|
|
|
pair<double,double> xf2 = *xf_iterator;
|
|
pair<double,double> xf1 = *(--xf_iterator);
|
|
// we now have: xf2.first > x
|
|
|
|
// Linear interpolation if derivative data is not available:
|
|
if (ddata.size() != data.size()) {
|
|
double finterp = xf1.second +
|
|
(xf2.second - xf1.second) / (xf2.first - xf1.first)
|
|
* (x - xf1.first);
|
|
return finterp;
|
|
}
|
|
else { // Do Cubic Hermite spline
|
|
double t = (x - xf1.first)/(xf2.first - xf1.first); // t \in [0,1]
|
|
double h = xf2.first - xf1.first;
|
|
double finterp
|
|
= xf1.second * H00(t)
|
|
+ ddata[xf1.first] * H10(t) * h
|
|
+ xf2.second * H01(t)
|
|
+ ddata[xf2.first] * H11(t) * h ;
|
|
return finterp;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// double
|
|
// MonotCubicInterpolator::
|
|
// evaluate(double x, double& errorestimate_output) {
|
|
// cout << "Error: errorestimate not implemented" << endl;
|
|
// throw("error estimate not implemented");
|
|
// return x;
|
|
// }
|
|
|
|
vector<double>
|
|
MonotCubicInterpolator::
|
|
get_xVector() const
|
|
{
|
|
map<double,double>::const_iterator xf_iterator = data.begin();
|
|
|
|
vector<double> outputvector;
|
|
outputvector.reserve(data.size());
|
|
for (xf_iterator = data.begin(); xf_iterator != data.end(); ++xf_iterator) {
|
|
outputvector.push_back(xf_iterator->first);
|
|
}
|
|
return outputvector;
|
|
}
|
|
|
|
|
|
vector<double>
|
|
MonotCubicInterpolator::
|
|
get_fVector() const
|
|
{
|
|
|
|
map<double,double>::const_iterator xf_iterator = data.begin();
|
|
|
|
vector<double> outputvector;
|
|
outputvector.reserve(data.size());
|
|
for (xf_iterator = data.begin(); xf_iterator != data.end(); ++xf_iterator) {
|
|
outputvector.push_back(xf_iterator->second);
|
|
}
|
|
return outputvector;
|
|
}
|
|
|
|
|
|
|
|
string
|
|
MonotCubicInterpolator::
|
|
toString() const
|
|
{
|
|
const int precision = 20;
|
|
std::string dataString;
|
|
std::stringstream dataStringStream;
|
|
for (map<double,double>::const_iterator it = data.begin();
|
|
it != data.end(); ++it) {
|
|
dataStringStream << setprecision(precision) << it->first;
|
|
dataStringStream << '\t';
|
|
dataStringStream << setprecision(precision) << it->second;
|
|
dataStringStream << '\n';
|
|
}
|
|
dataStringStream << "Derivative values:" << endl;
|
|
for (map<double,double>::const_iterator it = ddata.begin();
|
|
it != ddata.end(); ++it) {
|
|
dataStringStream << setprecision(precision) << it->first;
|
|
dataStringStream << '\t';
|
|
dataStringStream << setprecision(precision) << it->second;
|
|
dataStringStream << '\n';
|
|
}
|
|
|
|
return dataStringStream.str();
|
|
|
|
}
|
|
|
|
|
|
pair<double,double>
|
|
MonotCubicInterpolator::
|
|
getMissingX() const throw(const char*)
|
|
{
|
|
if( data.size() < 2) {
|
|
throw("MonotCubicInterpolator::getMissingX() only one datapoint.");
|
|
}
|
|
|
|
// Search for biggest difference value in function-datavalues:
|
|
|
|
map<double,double>::const_iterator maxfDiffPair_iterator = data.begin();;
|
|
double maxfDiffValue = 0;
|
|
|
|
map<double,double>::const_iterator xf_iterator;
|
|
map<double,double>::const_iterator xf_next_iterator;
|
|
|
|
for (xf_iterator = data.begin(), xf_next_iterator = ++(data.begin());
|
|
xf_next_iterator != data.end();
|
|
++xf_iterator, ++xf_next_iterator) {
|
|
double absfDiff = fabs((double)(*xf_next_iterator).second
|
|
- (double)(*xf_iterator).second);
|
|
if (absfDiff > maxfDiffValue) {
|
|
maxfDiffPair_iterator = xf_iterator;
|
|
maxfDiffValue = absfDiff;
|
|
}
|
|
}
|
|
|
|
double newXvalue = ((*maxfDiffPair_iterator).first + ((*(++maxfDiffPair_iterator)).first))/2;
|
|
return make_pair(newXvalue, maxfDiffValue);
|
|
|
|
}
|
|
|
|
|
|
|
|
pair<double,double>
|
|
MonotCubicInterpolator::
|
|
getMaximumF() const throw(const char*) {
|
|
if (data.size() <= 1) {
|
|
throw ("MonotCubicInterpolator::getMaximumF() empty data.") ;
|
|
}
|
|
if (strictlyIncreasing)
|
|
return *data.rbegin();
|
|
else if (strictlyDecreasing)
|
|
return *data.begin();
|
|
else {
|
|
pair<double,double> maxf = *data.rbegin() ;
|
|
map<double,double>::const_iterator xf_iterator;
|
|
for (xf_iterator = data.begin() ; xf_iterator != data.end(); ++xf_iterator) {
|
|
if (xf_iterator->second > maxf.second) {
|
|
maxf = *xf_iterator ;
|
|
} ;
|
|
}
|
|
return maxf ;
|
|
}
|
|
}
|
|
|
|
|
|
pair<double,double>
|
|
MonotCubicInterpolator::
|
|
getMinimumF() const throw(const char*) {
|
|
if (data.size() <= 1) {
|
|
throw ("MonotCubicInterpolator::getMinimumF() empty data.") ;
|
|
}
|
|
if (strictlyIncreasing)
|
|
return *data.begin();
|
|
else if (strictlyDecreasing) {
|
|
return *data.rbegin();
|
|
}
|
|
else {
|
|
pair<double,double> minf = *data.rbegin() ;
|
|
map<double,double>::const_iterator xf_iterator;
|
|
for (xf_iterator = data.begin() ; xf_iterator != data.end(); ++xf_iterator) {
|
|
if (xf_iterator->second < minf.second) {
|
|
minf = *xf_iterator ;
|
|
} ;
|
|
}
|
|
return minf ;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
MonotCubicInterpolator::
|
|
computeInternalFunctionData() const {
|
|
|
|
/* The contents of this function is meaningless if there is only one datapoint */
|
|
if (data.size() <= 1) {
|
|
return;
|
|
}
|
|
|
|
/* We do not check the caching flag if we are instructed
|
|
to do this computation */
|
|
|
|
/* We compute monotoneness and directions by assuming
|
|
monotoneness, and setting to false if the function is not for
|
|
some value */
|
|
|
|
map<double,double>::const_iterator xf_iterator;
|
|
map<double,double>::const_iterator xf_next_iterator;
|
|
|
|
|
|
strictlyMonotone = true; // We assume this is true, and will set to false if not
|
|
monotone = true;
|
|
strictlyDecreasing = true;
|
|
decreasing = true;
|
|
strictlyIncreasing = true;
|
|
increasing = true;
|
|
|
|
// Increasing or decreasing??
|
|
xf_iterator = data.begin();
|
|
xf_next_iterator = ++(data.begin());
|
|
/* Cater for non-strictness, search for direction for monotoneness */
|
|
while (xf_next_iterator != data.end() &&
|
|
xf_iterator->second == xf_next_iterator->second) {
|
|
/* Ok, equal values, this is not strict. */
|
|
strictlyMonotone = false;
|
|
strictlyIncreasing = false;
|
|
strictlyDecreasing = false;
|
|
|
|
++xf_iterator;
|
|
++xf_next_iterator;
|
|
}
|
|
|
|
|
|
if (xf_next_iterator != data.end()) {
|
|
|
|
if ( xf_iterator->second > xf_next_iterator->second) {
|
|
// Ok, decreasing, check monotoneness:
|
|
strictlyDecreasing = true;// if strictlyMonotone == false, this one should not be trusted anyway
|
|
decreasing = true;
|
|
strictlyIncreasing = false;
|
|
increasing = false;
|
|
while(++xf_iterator, ++xf_next_iterator != data.end()) {
|
|
if ((*xf_iterator).second < (*xf_next_iterator).second) {
|
|
monotone = false;
|
|
strictlyMonotone = false;
|
|
strictlyDecreasing = false; // meaningless now
|
|
break; // out of while loop
|
|
}
|
|
if ((*xf_iterator).second <= (*xf_next_iterator).second) {
|
|
strictlyMonotone = false;
|
|
strictlyDecreasing = false; // meaningless now
|
|
}
|
|
}
|
|
}
|
|
else if (xf_iterator->second < xf_next_iterator->second) {
|
|
// Ok, assume increasing, check monotoneness:
|
|
strictlyDecreasing = false;
|
|
strictlyIncreasing = true;
|
|
decreasing = false;
|
|
increasing = true;
|
|
while(++xf_iterator, ++xf_next_iterator != data.end()) {
|
|
if ((*xf_iterator).second > (*xf_next_iterator).second) {
|
|
monotone = false;
|
|
strictlyMonotone = false;
|
|
strictlyIncreasing = false; // meaningless now
|
|
break; // out of while loop
|
|
}
|
|
if ((*xf_iterator).second >= (*xf_next_iterator).second) {
|
|
strictlyMonotone = false;
|
|
strictlyIncreasing = false; // meaningless now
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// first two values must be equal if we get
|
|
// here, but that should have been taken care
|
|
// of by the while loop above.
|
|
throw("Programming logic error.") ;
|
|
}
|
|
|
|
}
|
|
computeSimpleDerivatives();
|
|
|
|
|
|
// If our input data is monotone, we can do monotone cubic
|
|
// interpolation, so adjust the derivatives if so.
|
|
//
|
|
// If input data is not monotone, we should not touch
|
|
// the derivatives, as this code should reduce to a
|
|
// standard cubic interpolation algorithm.
|
|
if (monotone) {
|
|
adjustDerivativesForMonotoneness();
|
|
}
|
|
|
|
strictlyMonotoneCached = true;
|
|
monotoneCached = true;
|
|
}
|
|
|
|
// Checks if the function curve is flat (zero derivative) at the
|
|
// endpoints, chop off endpoint data points if that is the case.
|
|
//
|
|
// The notion of "flat" is determined by the input parameter "epsilon"
|
|
// Values whose difference are less than epsilon are regarded as equal.
|
|
//
|
|
// This is implemented to be able to obtain a strictly monotone
|
|
// curve from a data set that is strictly monotone except at the
|
|
// endpoints.
|
|
//
|
|
// Example:
|
|
// The data points
|
|
// (1,3), (2,3), (3,4), (4,5), (5,5), (6,5)
|
|
// will become
|
|
// (2,3), (3,4), (4,5)
|
|
//
|
|
// Assumes at least 3 datapoints. If less than three, this function is a noop.
|
|
void
|
|
MonotCubicInterpolator::
|
|
chopFlatEndpoints(const double epsilon) {
|
|
|
|
if (getSize() < 3) {
|
|
return;
|
|
}
|
|
|
|
map<double,double>::iterator xf_iterator;
|
|
map<double,double>::iterator xf_next_iterator;
|
|
|
|
// Clear flags:
|
|
strictlyMonotoneCached = false;
|
|
monotoneCached = false;
|
|
|
|
// Chop left end:
|
|
xf_iterator = data.begin();
|
|
xf_next_iterator = ++(data.begin());
|
|
// Erase data points that are similar to its right value from the left end.
|
|
while ((xf_next_iterator != data.end()) &&
|
|
(fabs(xf_iterator->second - xf_next_iterator->second) < epsilon )) {
|
|
xf_next_iterator++;
|
|
data.erase(xf_iterator);
|
|
xf_iterator++;
|
|
}
|
|
|
|
xf_iterator = data.end();
|
|
xf_iterator--; // (data.end() points beyond the last element)
|
|
xf_next_iterator = xf_iterator;
|
|
xf_next_iterator--;
|
|
// Erase data points that are similar to its left value from the right end.
|
|
while ((xf_next_iterator != data.begin()) &&
|
|
(fabs(xf_iterator->second - xf_next_iterator->second) < epsilon )) {
|
|
xf_next_iterator--;
|
|
data.erase(xf_iterator);
|
|
xf_iterator--;
|
|
}
|
|
|
|
// Finished chopping, so recompute function data:
|
|
computeInternalFunctionData();
|
|
}
|
|
|
|
|
|
//
|
|
// If function is monotone, but not strictly monotone,
|
|
// this function will remove datapoints from intervals
|
|
// with zero derivative so that the curves become
|
|
// strictly monotone.
|
|
//
|
|
// Example
|
|
// The data points
|
|
// (1,2), (2,3), (3,4), (4,4), (5,5), (6,6)
|
|
// will become
|
|
// (1,2), (2,3), (3,4), (5,5), (6,6)
|
|
//
|
|
// Assumes at least two datapoints, if one or zero datapoint, this is a noop.
|
|
//
|
|
//
|
|
void
|
|
MonotCubicInterpolator::
|
|
shrinkFlatAreas(const double epsilon) {
|
|
|
|
if (getSize() < 2) {
|
|
return;
|
|
}
|
|
|
|
map<double,double>::iterator xf_iterator;
|
|
map<double,double>::iterator xf_next_iterator;
|
|
|
|
|
|
// Nothing to do if we already are strictly monotone
|
|
if (isStrictlyMonotone()) {
|
|
return;
|
|
}
|
|
|
|
// Refuse to change a curve that is not monotone.
|
|
if (!isMonotone()) {
|
|
return;
|
|
}
|
|
|
|
// Clear flags, they are not to be trusted after we modify the
|
|
// data
|
|
strictlyMonotoneCached = false;
|
|
monotoneCached = false;
|
|
|
|
// Iterate through data values, if two data pairs
|
|
// have equal values, delete one of the data pair.
|
|
// Do not trust the source code on which data point is being
|
|
// removed (x-values of equal y-points might be averaged in the future)
|
|
xf_iterator = data.begin();
|
|
xf_next_iterator = ++(data.begin());
|
|
|
|
while (xf_next_iterator != data.end()) {
|
|
//cout << xf_iterator->first << "," << xf_iterator->second << " " << xf_next_iterator->first << "," << xf_next_iterator->second << "\n";
|
|
if (fabs(xf_iterator->second - xf_next_iterator->second) < epsilon ) {
|
|
//cout << "erasing data pair" << xf_next_iterator->first << " " << xf_next_iterator->second << "\n";
|
|
map <double,double>::iterator xf_tobedeleted_iterator = xf_next_iterator;
|
|
xf_next_iterator++;
|
|
data.erase(xf_tobedeleted_iterator);
|
|
}
|
|
else {
|
|
xf_iterator++;
|
|
xf_next_iterator++;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void
|
|
MonotCubicInterpolator::
|
|
computeSimpleDerivatives() const {
|
|
|
|
ddata.clear();
|
|
|
|
// Do endpoints first:
|
|
map<double,double>::const_iterator xf_prev_iterator;
|
|
map<double,double>::const_iterator xf_iterator;
|
|
map<double,double>::const_iterator xf_next_iterator;
|
|
double diff;
|
|
|
|
// Leftmost interval:
|
|
xf_iterator = data.begin();
|
|
xf_next_iterator = ++(data.begin());
|
|
diff =
|
|
(xf_next_iterator->second - xf_iterator->second) /
|
|
(xf_next_iterator->first - xf_iterator->first);
|
|
ddata[xf_iterator->first] = diff ;
|
|
|
|
// Rightmost interval:
|
|
xf_iterator = --(--(data.end()));
|
|
xf_next_iterator = --(data.end());
|
|
diff =
|
|
(xf_next_iterator->second - xf_iterator->second) /
|
|
(xf_next_iterator->first - xf_iterator->first);
|
|
ddata[xf_next_iterator->first] = diff ;
|
|
|
|
// If we have more than two intervals, loop over internal points:
|
|
if (data.size() > 2) {
|
|
|
|
map<double,double>::const_iterator intpoint;
|
|
for (intpoint = ++data.begin(); intpoint != --data.end(); ++intpoint) {
|
|
/*
|
|
diff = (f2 - f1)/(x2-x1)/w + (f3-f1)/(x3-x2)/2
|
|
|
|
average of the forward and backward difference.
|
|
Weights are equal, should we weigh with h_i?
|
|
*/
|
|
|
|
map<double,double>::const_iterator lastpoint = intpoint; --lastpoint;
|
|
map<double,double>::const_iterator nextpoint = intpoint; ++nextpoint;
|
|
|
|
diff = (nextpoint->second - intpoint->second)/
|
|
(2*(nextpoint->first - intpoint->first))
|
|
+
|
|
(intpoint->second - lastpoint->second) /
|
|
(2*(intpoint->first - lastpoint->first));
|
|
|
|
ddata[intpoint->first] = diff ;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
MonotCubicInterpolator::
|
|
adjustDerivativesForMonotoneness() const {
|
|
map<double,double>::const_iterator point, dpoint;
|
|
|
|
/* Loop over all intervals, ie. loop over all points and look
|
|
at the interval to the right of the point */
|
|
for (point = data.begin(), dpoint = ddata.begin();
|
|
point != --data.end();
|
|
++point, ++dpoint) {
|
|
map<double,double>::const_iterator nextpoint, nextdpoint;
|
|
nextpoint = point; ++nextpoint;
|
|
nextdpoint = dpoint; ++nextdpoint;
|
|
|
|
double delta =
|
|
(nextpoint->second - point->second) /
|
|
(nextpoint->first - point->first);
|
|
if (fabs(delta) < 1e-14) {
|
|
ddata[point->first] = 0.0;
|
|
ddata[nextpoint->first] = 0.0;
|
|
} else {
|
|
double alpha = ddata[point->first] / delta;
|
|
double beta = ddata[nextpoint->first] / delta;
|
|
|
|
if (! isMonotoneCoeff(alpha, beta)) {
|
|
double tau = 3/sqrt(alpha*alpha + beta*beta);
|
|
|
|
ddata[point->first] = tau*alpha*delta;
|
|
ddata[nextpoint->first] = tau*beta*delta;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
MonotCubicInterpolator::
|
|
scaleData(double factor) {
|
|
map<double,double>::iterator it , itd ;
|
|
if (data.size() == ddata.size()) {
|
|
for (it = data.begin() , itd = ddata.begin() ; it != data.end() ; ++it , ++itd) {
|
|
it->second *= factor ;
|
|
itd->second *= factor ;
|
|
} ;
|
|
} else {
|
|
for (it = data.begin() ; it != data.end() ; ++it ) {
|
|
it->second *= factor ;
|
|
}
|
|
}
|
|
}
|