opm-core/opm/core/utility/MonotCubicInterpolator.cpp
2011-12-19 11:34:50 +01:00

727 lines
20 KiB
C++

/*
MonotCubicInterpolator
Copyright (C) 2006 Statoil ASA
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/**
@file MonotCubicInterpolator.C
@brief Represents one dimensional function f with single valued argument x
Class to represent a one-dimensional function with single-valued
argument. Cubic interpolation, preserving the monotonicity of the
discrete known function values
@see MonotCubicInterpolator.h for further documentation.
*/
#include "MonotCubicInterpolator.hpp"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include <map>
#include <cmath>
using namespace std;
/*
SOME DISCUSSION ON DATA STORAGE:
Internal data structure of points and values:
vector(s):
- Easier coding
- Faster vector operations when setting up derivatives.
- sorting slightly more complex.
- insertion of further values bad.
vector<double,double>
- easy sorting
- code complexity almost as for map.
- insertion of additional values bad
vector over struct datapoint { x, f, d}
- nice code
- not as sortable, insertion is cumbersome.
** This is used currently: **
map<double, double> one for (x,f) and one for (x,d)
- Naturally sorted on x-values (done by the map-construction)
- Slower to set up, awkward loop coding (?)
- easy to add more points.
- easier to just add code to linear interpolation code
- x-data is duplicated, but that memory waste is
unlikely to represent a serious issue.
map<double, <double, double> >
- naturally couples x-value, f-value and d-value
- even more unreadable(??) code?
- higher skills needed by programmer.
MONOTONE CUBIC INTERPOLATION:
It is a local algorithm. Adding one point only incur recomputation
of values in a neighbourhood of the point (in the interval getting
divided).
NOTE: We do not currently make use of this local fact. Upon
insertion of a new data pair, everything is recomputed. Revisit
this when needed.
*/
MonotCubicInterpolator::
MonotCubicInterpolator(const vector<double> & x, const vector<double> & f) {
if (x.size() != f.size()) {
throw("Unable to constuct MonotCubicInterpolator from vectors.") ;
}
// Add the contents of the input vectors to our map of values.
vector<double>::const_iterator posx, posf;
for (posx = x.begin(), posf = f.begin(); posx != x.end(); ++posx, ++posf) {
data[*posx] = *posf ;
}
computeInternalFunctionData();
}
bool
MonotCubicInterpolator::
read(const std::string & datafilename, int xColumn, int fColumn)
{
data.clear() ;
ddata.clear() ;
ifstream datafile_fs(datafilename.c_str());
if (!datafile_fs) {
return false ;
}
string linestring;
while (!datafile_fs.eof()) {
getline(datafile_fs, linestring);
// Replace commas with space:
string::size_type pos = 0;
while ( (pos = linestring.find(",", pos)) != string::npos ) {
// cout << "Found comma at position " << pos << endl;
linestring.replace(pos, 1, " ");
pos++;
}
stringstream strs(linestring);
int columnindex = 0;
std::vector<double> value;
if (linestring.size() > 0 && linestring.at(0) != '#') {
while (!(strs.rdstate() & std::ios::failbit)) {
double tmp;
strs >> tmp;
value.push_back(tmp);
columnindex++;
}
}
if (columnindex >= (max(xColumn, fColumn))) {
data[value[xColumn-1]] = value[fColumn-1] ;
}
}
datafile_fs.close();
if (data.size() == 0) {
return false ;
}
computeInternalFunctionData();
return true ;
}
void
MonotCubicInterpolator::
addPair(double newx, double newf) throw(const char*) {
if (std::isnan(newx) || std::isinf(newx) || std::isnan(newf) || std::isinf(newf)) {
throw("MonotCubicInterpolator: addPair() received inf/nan input.");
}
data[newx] = newf ;
// In a critical application, we should only update the
// internal function data for the offended interval,
// not for all function values over again.
computeInternalFunctionData();
}
double
MonotCubicInterpolator::
evaluate(double x) const throw(const char*){
if (std::isnan(x) || std::isinf(x)) {
throw("MonotCubicInterpolator: evaluate() received inf/nan input.");
}
// xf becomes the first (xdata,fdata) pair where xdata >= x
map<double,double>::const_iterator xf_iterator = data.lower_bound(x);
// First check if we must extrapolate:
if (xf_iterator == data.begin()) {
if (data.begin()->first == x) { // Just on the interval limit
return data.begin()->second;
}
else {
// Constant extrapolation (!!)
return data.begin()->second;
}
}
if (xf_iterator == data.end()) {
// Constant extrapolation (!!)
return data.rbegin()->second;
}
// Ok, we have x_min < x < x_max
pair<double,double> xf2 = *xf_iterator;
pair<double,double> xf1 = *(--xf_iterator);
// we now have: xf2.first > x
// Linear interpolation if derivative data is not available:
if (ddata.size() != data.size()) {
double finterp = xf1.second +
(xf2.second - xf1.second) / (xf2.first - xf1.first)
* (x - xf1.first);
return finterp;
}
else { // Do Cubic Hermite spline
double t = (x - xf1.first)/(xf2.first - xf1.first); // t \in [0,1]
double h = xf2.first - xf1.first;
double finterp
= xf1.second * H00(t)
+ ddata[xf1.first] * H10(t) * h
+ xf2.second * H01(t)
+ ddata[xf2.first] * H11(t) * h ;
return finterp;
}
}
// double
// MonotCubicInterpolator::
// evaluate(double x, double& errorestimate_output) {
// cout << "Error: errorestimate not implemented" << endl;
// throw("error estimate not implemented");
// return x;
// }
vector<double>
MonotCubicInterpolator::
get_xVector() const
{
map<double,double>::const_iterator xf_iterator = data.begin();
vector<double> outputvector;
outputvector.reserve(data.size());
for (xf_iterator = data.begin(); xf_iterator != data.end(); ++xf_iterator) {
outputvector.push_back(xf_iterator->first);
}
return outputvector;
}
vector<double>
MonotCubicInterpolator::
get_fVector() const
{
map<double,double>::const_iterator xf_iterator = data.begin();
vector<double> outputvector;
outputvector.reserve(data.size());
for (xf_iterator = data.begin(); xf_iterator != data.end(); ++xf_iterator) {
outputvector.push_back(xf_iterator->second);
}
return outputvector;
}
string
MonotCubicInterpolator::
toString() const
{
const int precision = 20;
std::string dataString;
std::stringstream dataStringStream;
for (map<double,double>::const_iterator it = data.begin();
it != data.end(); ++it) {
dataStringStream << setprecision(precision) << it->first;
dataStringStream << '\t';
dataStringStream << setprecision(precision) << it->second;
dataStringStream << '\n';
}
dataStringStream << "Derivative values:" << endl;
for (map<double,double>::const_iterator it = ddata.begin();
it != ddata.end(); ++it) {
dataStringStream << setprecision(precision) << it->first;
dataStringStream << '\t';
dataStringStream << setprecision(precision) << it->second;
dataStringStream << '\n';
}
return dataStringStream.str();
}
pair<double,double>
MonotCubicInterpolator::
getMissingX() const throw(const char*)
{
if( data.size() < 2) {
throw("MonotCubicInterpolator::getMissingX() only one datapoint.");
}
// Search for biggest difference value in function-datavalues:
map<double,double>::const_iterator maxfDiffPair_iterator = data.begin();;
double maxfDiffValue = 0;
map<double,double>::const_iterator xf_iterator;
map<double,double>::const_iterator xf_next_iterator;
for (xf_iterator = data.begin(), xf_next_iterator = ++(data.begin());
xf_next_iterator != data.end();
++xf_iterator, ++xf_next_iterator) {
double absfDiff = fabs((double)(*xf_next_iterator).second
- (double)(*xf_iterator).second);
if (absfDiff > maxfDiffValue) {
maxfDiffPair_iterator = xf_iterator;
maxfDiffValue = absfDiff;
}
}
double newXvalue = ((*maxfDiffPair_iterator).first + ((*(++maxfDiffPair_iterator)).first))/2;
return make_pair(newXvalue, maxfDiffValue);
}
pair<double,double>
MonotCubicInterpolator::
getMaximumF() const throw(const char*) {
if (data.size() <= 1) {
throw ("MonotCubicInterpolator::getMaximumF() empty data.") ;
}
if (strictlyIncreasing)
return *data.rbegin();
else if (strictlyDecreasing)
return *data.begin();
else {
pair<double,double> maxf = *data.rbegin() ;
map<double,double>::const_iterator xf_iterator;
for (xf_iterator = data.begin() ; xf_iterator != data.end(); ++xf_iterator) {
if (xf_iterator->second > maxf.second) {
maxf = *xf_iterator ;
} ;
}
return maxf ;
}
}
pair<double,double>
MonotCubicInterpolator::
getMinimumF() const throw(const char*) {
if (data.size() <= 1) {
throw ("MonotCubicInterpolator::getMinimumF() empty data.") ;
}
if (strictlyIncreasing)
return *data.begin();
else if (strictlyDecreasing) {
return *data.rbegin();
}
else {
pair<double,double> minf = *data.rbegin() ;
map<double,double>::const_iterator xf_iterator;
for (xf_iterator = data.begin() ; xf_iterator != data.end(); ++xf_iterator) {
if (xf_iterator->second < minf.second) {
minf = *xf_iterator ;
} ;
}
return minf ;
}
}
void
MonotCubicInterpolator::
computeInternalFunctionData() const {
/* The contents of this function is meaningless if there is only one datapoint */
if (data.size() <= 1) {
return;
}
/* We do not check the caching flag if we are instructed
to do this computation */
/* We compute monotoneness and directions by assuming
monotoneness, and setting to false if the function is not for
some value */
map<double,double>::const_iterator xf_iterator;
map<double,double>::const_iterator xf_next_iterator;
strictlyMonotone = true; // We assume this is true, and will set to false if not
monotone = true;
strictlyDecreasing = true;
decreasing = true;
strictlyIncreasing = true;
increasing = true;
// Increasing or decreasing??
xf_iterator = data.begin();
xf_next_iterator = ++(data.begin());
/* Cater for non-strictness, search for direction for monotoneness */
while (xf_next_iterator != data.end() &&
xf_iterator->second == xf_next_iterator->second) {
/* Ok, equal values, this is not strict. */
strictlyMonotone = false;
strictlyIncreasing = false;
strictlyDecreasing = false;
++xf_iterator;
++xf_next_iterator;
}
if (xf_next_iterator != data.end()) {
if ( xf_iterator->second > xf_next_iterator->second) {
// Ok, decreasing, check monotoneness:
strictlyDecreasing = true;// if strictlyMonotone == false, this one should not be trusted anyway
decreasing = true;
strictlyIncreasing = false;
increasing = false;
while(++xf_iterator, ++xf_next_iterator != data.end()) {
if ((*xf_iterator).second < (*xf_next_iterator).second) {
monotone = false;
strictlyMonotone = false;
strictlyDecreasing = false; // meaningless now
break; // out of while loop
}
if ((*xf_iterator).second <= (*xf_next_iterator).second) {
strictlyMonotone = false;
strictlyDecreasing = false; // meaningless now
}
}
}
else if (xf_iterator->second < xf_next_iterator->second) {
// Ok, assume increasing, check monotoneness:
strictlyDecreasing = false;
strictlyIncreasing = true;
decreasing = false;
increasing = true;
while(++xf_iterator, ++xf_next_iterator != data.end()) {
if ((*xf_iterator).second > (*xf_next_iterator).second) {
monotone = false;
strictlyMonotone = false;
strictlyIncreasing = false; // meaningless now
break; // out of while loop
}
if ((*xf_iterator).second >= (*xf_next_iterator).second) {
strictlyMonotone = false;
strictlyIncreasing = false; // meaningless now
}
}
}
else {
// first two values must be equal if we get
// here, but that should have been taken care
// of by the while loop above.
throw("Programming logic error.") ;
}
}
computeSimpleDerivatives();
// If our input data is monotone, we can do monotone cubic
// interpolation, so adjust the derivatives if so.
//
// If input data is not monotone, we should not touch
// the derivatives, as this code should reduce to a
// standard cubic interpolation algorithm.
if (monotone) {
adjustDerivativesForMonotoneness();
}
strictlyMonotoneCached = true;
monotoneCached = true;
}
// Checks if the function curve is flat (zero derivative) at the
// endpoints, chop off endpoint data points if that is the case.
//
// The notion of "flat" is determined by the input parameter "epsilon"
// Values whose difference are less than epsilon are regarded as equal.
//
// This is implemented to be able to obtain a strictly monotone
// curve from a data set that is strictly monotone except at the
// endpoints.
//
// Example:
// The data points
// (1,3), (2,3), (3,4), (4,5), (5,5), (6,5)
// will become
// (2,3), (3,4), (4,5)
//
// Assumes at least 3 datapoints. If less than three, this function is a noop.
void
MonotCubicInterpolator::
chopFlatEndpoints(const double epsilon) {
if (getSize() < 3) {
return;
}
map<double,double>::iterator xf_iterator;
map<double,double>::iterator xf_next_iterator;
// Clear flags:
strictlyMonotoneCached = false;
monotoneCached = false;
// Chop left end:
xf_iterator = data.begin();
xf_next_iterator = ++(data.begin());
// Erase data points that are similar to its right value from the left end.
while ((xf_next_iterator != data.end()) &&
(fabs(xf_iterator->second - xf_next_iterator->second) < epsilon )) {
xf_next_iterator++;
data.erase(xf_iterator);
xf_iterator++;
}
xf_iterator = data.end();
xf_iterator--; // (data.end() points beyond the last element)
xf_next_iterator = xf_iterator;
xf_next_iterator--;
// Erase data points that are similar to its left value from the right end.
while ((xf_next_iterator != data.begin()) &&
(fabs(xf_iterator->second - xf_next_iterator->second) < epsilon )) {
xf_next_iterator--;
data.erase(xf_iterator);
xf_iterator--;
}
// Finished chopping, so recompute function data:
computeInternalFunctionData();
}
//
// If function is monotone, but not strictly monotone,
// this function will remove datapoints from intervals
// with zero derivative so that the curves become
// strictly monotone.
//
// Example
// The data points
// (1,2), (2,3), (3,4), (4,4), (5,5), (6,6)
// will become
// (1,2), (2,3), (3,4), (5,5), (6,6)
//
// Assumes at least two datapoints, if one or zero datapoint, this is a noop.
//
//
void
MonotCubicInterpolator::
shrinkFlatAreas(const double epsilon) {
if (getSize() < 2) {
return;
}
map<double,double>::iterator xf_iterator;
map<double,double>::iterator xf_next_iterator;
// Nothing to do if we already are strictly monotone
if (isStrictlyMonotone()) {
return;
}
// Refuse to change a curve that is not monotone.
if (!isMonotone()) {
return;
}
// Clear flags, they are not to be trusted after we modify the
// data
strictlyMonotoneCached = false;
monotoneCached = false;
// Iterate through data values, if two data pairs
// have equal values, delete one of the data pair.
// Do not trust the source code on which data point is being
// removed (x-values of equal y-points might be averaged in the future)
xf_iterator = data.begin();
xf_next_iterator = ++(data.begin());
while (xf_next_iterator != data.end()) {
//cout << xf_iterator->first << "," << xf_iterator->second << " " << xf_next_iterator->first << "," << xf_next_iterator->second << "\n";
if (fabs(xf_iterator->second - xf_next_iterator->second) < epsilon ) {
//cout << "erasing data pair" << xf_next_iterator->first << " " << xf_next_iterator->second << "\n";
map <double,double>::iterator xf_tobedeleted_iterator = xf_next_iterator;
xf_next_iterator++;
data.erase(xf_tobedeleted_iterator);
}
else {
xf_iterator++;
xf_next_iterator++;
}
}
}
void
MonotCubicInterpolator::
computeSimpleDerivatives() const {
ddata.clear();
// Do endpoints first:
map<double,double>::const_iterator xf_prev_iterator;
map<double,double>::const_iterator xf_iterator;
map<double,double>::const_iterator xf_next_iterator;
double diff;
// Leftmost interval:
xf_iterator = data.begin();
xf_next_iterator = ++(data.begin());
diff =
(xf_next_iterator->second - xf_iterator->second) /
(xf_next_iterator->first - xf_iterator->first);
ddata[xf_iterator->first] = diff ;
// Rightmost interval:
xf_iterator = --(--(data.end()));
xf_next_iterator = --(data.end());
diff =
(xf_next_iterator->second - xf_iterator->second) /
(xf_next_iterator->first - xf_iterator->first);
ddata[xf_next_iterator->first] = diff ;
// If we have more than two intervals, loop over internal points:
if (data.size() > 2) {
map<double,double>::const_iterator intpoint;
for (intpoint = ++data.begin(); intpoint != --data.end(); ++intpoint) {
/*
diff = (f2 - f1)/(x2-x1)/w + (f3-f1)/(x3-x2)/2
average of the forward and backward difference.
Weights are equal, should we weigh with h_i?
*/
map<double,double>::const_iterator lastpoint = intpoint; --lastpoint;
map<double,double>::const_iterator nextpoint = intpoint; ++nextpoint;
diff = (nextpoint->second - intpoint->second)/
(2*(nextpoint->first - intpoint->first))
+
(intpoint->second - lastpoint->second) /
(2*(intpoint->first - lastpoint->first));
ddata[intpoint->first] = diff ;
}
}
}
void
MonotCubicInterpolator::
adjustDerivativesForMonotoneness() const {
map<double,double>::const_iterator point, dpoint;
/* Loop over all intervals, ie. loop over all points and look
at the interval to the right of the point */
for (point = data.begin(), dpoint = ddata.begin();
point != --data.end();
++point, ++dpoint) {
map<double,double>::const_iterator nextpoint, nextdpoint;
nextpoint = point; ++nextpoint;
nextdpoint = dpoint; ++nextdpoint;
double delta =
(nextpoint->second - point->second) /
(nextpoint->first - point->first);
if (fabs(delta) < 1e-14) {
ddata[point->first] = 0.0;
ddata[nextpoint->first] = 0.0;
} else {
double alpha = ddata[point->first] / delta;
double beta = ddata[nextpoint->first] / delta;
if (! isMonotoneCoeff(alpha, beta)) {
double tau = 3/sqrt(alpha*alpha + beta*beta);
ddata[point->first] = tau*alpha*delta;
ddata[nextpoint->first] = tau*beta*delta;
}
}
}
}
void
MonotCubicInterpolator::
scaleData(double factor) {
map<double,double>::iterator it , itd ;
if (data.size() == ddata.size()) {
for (it = data.begin() , itd = ddata.begin() ; it != data.end() ; ++it , ++itd) {
it->second *= factor ;
itd->second *= factor ;
} ;
} else {
for (it = data.begin() ; it != data.end() ; ++it ) {
it->second *= factor ;
}
}
}