opm-core/opm/core/WellsGroup.cpp

1140 lines
48 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/WellsGroup.hpp>
#include <cmath>
#include <opm/core/newwells.h>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
namespace Opm
{
// ========== WellPhasesSummed methods ===========
WellPhasesSummed::WellPhasesSummed()
{
for (int i = 0; i < 3; ++i) {
res_inj_rates[i] = 0.0;
res_prod_rates[i] = 0.0;
surf_inj_rates[i] = 0.0;
surf_prod_rates[i] = 0.0;
}
}
void WellPhasesSummed::operator+=(const WellPhasesSummed& other)
{
for (int i = 0; i < 3; ++i) {
res_inj_rates[i] += other.res_inj_rates[i];
res_prod_rates[i] += other.res_prod_rates[i];
surf_inj_rates[i] += other.surf_inj_rates[i];
surf_prod_rates[i] += other.surf_prod_rates[i];
}
}
// ========== WellsGroupInterface methods ===========
WellsGroupInterface::WellsGroupInterface(const std::string& myname,
const ProductionSpecification& prod_spec,
const InjectionSpecification& inje_spec,
const PhaseUsage& phase_usage)
: parent_(NULL),
name_(myname),
production_specification_(prod_spec),
injection_specification_(inje_spec),
phase_usage_(phase_usage)
{
}
WellsGroupInterface::~WellsGroupInterface()
{
}
const WellsGroupInterface* WellsGroupInterface::getParent() const
{
return parent_;
}
const std::string& WellsGroupInterface::name()
{
return name_;
}
const PhaseUsage& WellsGroupInterface::phaseUsage() const
{
return phase_usage_;
}
bool WellsGroupInterface::isLeafNode() const
{
return false;
}
void WellsGroupInterface::setParent(WellsGroupInterface* parent)
{
parent_ = parent;
}
const ProductionSpecification& WellsGroupInterface::prodSpec() const
{
return production_specification_;
}
/// Injection specifications for the well or well group.
const InjectionSpecification& WellsGroupInterface::injSpec() const
{
return injection_specification_;
}
/// Production specifications for the well or well group.
ProductionSpecification& WellsGroupInterface::prodSpec()
{
return production_specification_;
}
/// Injection specifications for the well or well group.
InjectionSpecification& WellsGroupInterface::injSpec()
{
return injection_specification_;
}
/// Calculates the correct rate for the given ProductionSpecification::ControlMode
double WellsGroupInterface::rateByMode(const double* res_rates,
const double* surf_rates,
const ProductionSpecification::ControlMode mode)
{
switch (mode) {
case ProductionSpecification::ORAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Liquid]];
case ProductionSpecification::WRAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Aqua]];
case ProductionSpecification::GRAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Vapour]];
case ProductionSpecification::LRAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Liquid]]
+ surf_rates[phaseUsage().phase_pos[BlackoilPhases::Aqua]];
case ProductionSpecification::RESV:
{
double tot_rate = 0.0;
for (int phase = 0; phase < phaseUsage().num_phases; ++phase) {
tot_rate += res_rates[phase];
}
return tot_rate;
}
default:
THROW("No rate associated with production control mode" << mode);
}
}
/// Calculates the correct rate for the given InjectionSpecification::ControlMode
double WellsGroupInterface::rateByMode(const double* res_rates,
const double* surf_rates,
const InjectionSpecification::ControlMode mode)
{
const double* rates = 0;
switch (mode) {
case InjectionSpecification::RATE:
rates = surf_rates;
break;
case InjectionSpecification::RESV:
rates = res_rates;
break;
default:
THROW("No rate associated with injection control mode" << mode);
}
double tot_rate = 0.0;
for (int phase = 0; phase < phaseUsage().num_phases; ++phase) {
tot_rate += rates[phase];
}
return tot_rate;
}
double WellsGroupInterface::getTarget(ProductionSpecification::ControlMode mode)
{
double target = -1.0;
switch (mode) {
case ProductionSpecification::GRAT:
target = prodSpec().gas_max_rate_;
break;
case ProductionSpecification::WRAT:
target = prodSpec().water_max_rate_;
break;
case ProductionSpecification::ORAT:
target = prodSpec().oil_max_rate_;
break;
case ProductionSpecification::RESV:
target = prodSpec().reservoir_flow_max_rate_;
break;
case ProductionSpecification::LRAT:
target = prodSpec().liquid_max_rate_;
break;
case ProductionSpecification::GRUP:
THROW("Can't query target production rate for GRUP control keyword");
break;
default:
THROW("Unsupported control mode to query target " << mode);
break;
}
return target;
}
double WellsGroupInterface::getTarget(InjectionSpecification::ControlMode mode)
{
double target = -1.0;
switch (mode) {
case InjectionSpecification::RATE:
target = injSpec().surface_flow_max_rate_;
break;
case InjectionSpecification::RESV:
target = injSpec().reservoir_flow_max_rate_;
break;
case InjectionSpecification::GRUP:
THROW("Can't query target production rate for GRUP control keyword");
break;
default:
THROW("Unsupported control mode to query target " << mode);
break;
}
return target;
}
// ============== WellsGroup members =============
WellsGroupInterface* WellsGroup::findGroup(const std::string& name_of_node)
{
if (name() == name_of_node) {
return this;
} else {
for (size_t i = 0; i < children_.size(); i++) {
WellsGroupInterface* result = children_[i]->findGroup(name_of_node);
if (result) {
return result;
}
}
// Not found in this node.
return NULL;
}
}
WellsGroup::WellsGroup(const std::string& myname,
const ProductionSpecification& prod_spec,
const InjectionSpecification& inj_spec,
const PhaseUsage& phase_usage)
: WellsGroupInterface(myname, prod_spec, inj_spec, phase_usage)
{
}
/// Sets the current active control to the provided one for all injectors within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
/// \param[in] forced if true, all children will be set under group control, otherwise
/// only children that are under group control will be changed.
void WellsGroup::applyInjGroupControl(const InjectionSpecification::ControlMode control_mode,
const double target,
const bool forced)
{
if (forced || injSpec().control_mode_ == InjectionSpecification::FLD
|| injSpec().control_mode_ == InjectionSpecification::NONE) {
const double my_guide_rate = injectionGuideRate(!forced);
if (my_guide_rate == 0.0) {
// Nothing to do here
return;
}
for (size_t i = 0; i < children_.size(); ++i) {
const double child_target = target * children_[i]->injectionGuideRate(!forced) / my_guide_rate;
children_[i]->applyInjGroupControl(control_mode, child_target, true);
}
injSpec().control_mode_ = InjectionSpecification::FLD;
}
}
/// Sets the current active control to the provided one for all producers within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
/// \param[in] forced if true, all children will be set under group control, otherwise
/// only children that are under group control will be changed.
void WellsGroup::applyProdGroupControl(const ProductionSpecification::ControlMode control_mode,
const double target,
const bool forced)
{
if (forced || (prodSpec().control_mode_ == ProductionSpecification::FLD
|| prodSpec().control_mode_ == ProductionSpecification::NONE)) {
const double my_guide_rate = productionGuideRate(!forced);
if (my_guide_rate == 0.0) {
// Nothing to do here
std::cout << "returning" << std::endl;
return;
}
for (size_t i = 0; i < children_.size(); ++i) {
const double child_target = target * children_[i]->productionGuideRate(!forced) / my_guide_rate;
children_[i]->applyProdGroupControl(control_mode, child_target, true);
}
prodSpec().control_mode_ = ProductionSpecification::FLD;
}
}
bool WellsGroup::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
WellPhasesSummed& summed_phases)
{
// Check children's constraints recursively.
WellPhasesSummed child_phases_summed;
for (size_t i = 0; i < children_.size(); ++i) {
WellPhasesSummed current_child_phases_summed;
if (!children_[i]->conditionsMet(well_bhp,
well_reservoirrates_phase,
well_surfacerates_phase,
current_child_phases_summed)) {
return false;
}
child_phases_summed += current_child_phases_summed;
}
// Injection constraints.
InjectionSpecification::ControlMode injection_modes[] = {InjectionSpecification::RATE,
InjectionSpecification::RESV};
// RATE
for (int mode_index = 0; mode_index < 2; ++mode_index) {
InjectionSpecification::ControlMode mode = injection_modes[mode_index];
if(injSpec().control_mode_ == mode) {
continue;
}
const double target_rate = getTarget(mode);
if (target_rate >= 0.0) {
double my_rate = rateByMode(child_phases_summed.res_inj_rates,
child_phases_summed.surf_inj_rates,
mode);
if (my_rate > target_rate) {
std::cout << "Group " << mode<<" target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyInjGroupControl(mode, target_rate, true);
injSpec().control_mode_ = mode;
return false;
}
}
}
// REIN
// \TODO: Add support for REIN controls.
// Production constraints.
ProductionSpecification::ControlMode production_modes[] = {ProductionSpecification::ORAT,
ProductionSpecification::WRAT,
ProductionSpecification::GRAT,
ProductionSpecification::LRAT,
ProductionSpecification::RESV};
bool production_violated = false;
ProductionSpecification::ControlMode production_mode_violated;
for (int mode_index = 0; mode_index < 5; ++mode_index) {
const ProductionSpecification::ControlMode mode = production_modes[mode_index];
if (prodSpec().control_mode_ == mode) {
continue;
}
const double target_rate = getTarget(mode);
if (target_rate >= 0.0) {
const double my_rate = rateByMode(child_phases_summed.res_prod_rates,
child_phases_summed.surf_prod_rates,
mode);
if (std::fabs(my_rate) > target_rate) {
std::cout << "Group" << mode << " target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
production_violated = true;
production_mode_violated = mode;
break;
}
}
}
if (production_violated) {
switch (prodSpec().procedure_) {
case ProductionSpecification::WELL:
getWorstOffending(well_reservoirrates_phase,
well_surfacerates_phase,
production_mode_violated).first->shutWell();
return false;
case ProductionSpecification::RATE:
std::cout << "Applying group control" << std::endl;
applyProdGroupControl(production_mode_violated,
getTarget(production_mode_violated),
true);
return false;
case ProductionSpecification::NONE_P:
// Do nothing
return false;
}
}
summed_phases += child_phases_summed;
return true;
}
void WellsGroup::addChild(std::tr1::shared_ptr<WellsGroupInterface> child)
{
children_.push_back(child);
}
int WellsGroup::numberOfLeafNodes() {
// This could probably use some caching, but seeing as how the number of
// wells is relatively small, we'll do without for now.
int sum = 0;
for(size_t i = 0; i < children_.size(); i++) {
sum += children_[i]->numberOfLeafNodes();
}
return sum;
}
std::pair<WellNode*, double> WellsGroup::getWorstOffending(const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
ProductionSpecification::ControlMode mode)
{
std::pair<WellNode*, double> max;
for (size_t i = 0; i < children_.size(); i++) {
std::pair<WellNode*, double> child_max = children_[i]->getWorstOffending(well_reservoirrates_phase,
well_surfacerates_phase,
mode);
if (i == 0 || max.second < child_max.second) {
max = child_max;
}
}
return max;
}
void WellsGroup::applyProdGroupControls()
{
ProductionSpecification::ControlMode prod_mode = prodSpec().control_mode_;
switch (prod_mode) {
case ProductionSpecification::ORAT:
case ProductionSpecification::WRAT:
case ProductionSpecification::LRAT:
case ProductionSpecification::RESV:
{
const double my_guide_rate = productionGuideRate(true);
if (my_guide_rate == 0) {
THROW("Can't apply group control for group " << name() << " as the sum of guide rates for all group controlled wells is zero.");
}
for (size_t i = 0; i < children_.size(); ++i ) {
// Apply for all children.
// Note, we do _not_ want to call the applyProdGroupControl in this object,
// as that would check if we're under group control, something we're not.
const double children_guide_rate = children_[i]->productionGuideRate(true);
children_[i]->applyProdGroupControl(prod_mode,
(children_guide_rate / my_guide_rate) * getTarget(prod_mode),
false);
}
break;
}
case ProductionSpecification::FLD:
case ProductionSpecification::NONE:
// Call all children
for (size_t i = 0; i < children_.size(); ++i ) {
children_[i]->applyProdGroupControls();
}
break;
default:
THROW("Unhandled group production control type " << prod_mode);
}
}
void WellsGroup::applyInjGroupControls()
{
InjectionSpecification::ControlMode inj_mode = injSpec().control_mode_;
switch (inj_mode) {
case InjectionSpecification::RATE:
case InjectionSpecification::RESV:
{
const double my_guide_rate = injectionGuideRate(true);
for (size_t i = 0; i < children_.size(); ++i) {
// Apply for all children.
// Note, we do _not_ want to call the applyProdGroupControl in this object,
// as that would check if we're under group control, something we're not.
const double children_guide_rate = children_[i]->injectionGuideRate(true);
children_[i]->applyInjGroupControl(inj_mode,
(children_guide_rate / my_guide_rate) * getTarget(inj_mode),
false);
}
return;
}
case InjectionSpecification::VREP:
case InjectionSpecification::REIN:
std::cout << "Replacement keywords found, remember to call applyExplicitReinjectionControls." << std::endl;
return;
case InjectionSpecification::FLD:
case InjectionSpecification::NONE:
// Call all children
for (size_t i = 0; i < children_.size(); ++i ) {
children_[i]->applyInjGroupControls();
}
return;
default:
THROW("Unhandled group injection control mode " << inj_mode);
}
}
/// Calculates the production guide rate for the group.
/// \param[in] only_group If true, will only accumelate guide rates for
/// wells under group control
double WellsGroup::productionGuideRate(bool only_group)
{
double sum = 0.0;
for (size_t i = 0; i < children_.size(); ++i) {
sum += children_[i]->productionGuideRate(only_group);
}
return sum;
}
/// Calculates the injection guide rate for the group.
/// \param[in] only_group If true, will only accumelate guide rates for
/// wells under group control
double WellsGroup::injectionGuideRate(bool only_group)
{
double sum = 0.0;
for (size_t i = 0; i < children_.size(); ++i) {
sum += children_[i]->injectionGuideRate(only_group);
}
return sum;
}
/// Gets the total production flow of the given phase.
/// \param[in] phase_flows A vector containing rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[in] phase The phase for which to sum up.
double WellsGroup::getTotalProductionFlow(const std::vector<double>& phase_flows,
const BlackoilPhases::PhaseIndex phase)
{
double sum = 0.0;
for (size_t i = 0; i < children_.size(); ++i) {
sum += children_[i]->getTotalProductionFlow(phase_flows, phase);
}
return sum;
}
/// Applies explicit reinjection controls. This must be called at each timestep to be correct.
/// \param[in] well_reservoirrates_phase
/// A vector containing reservoir rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[in] well_surfacerates_phase
/// A vector containing surface rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
void WellsGroup::applyExplicitReinjectionControls(const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase)
{
if (injSpec().control_mode_ == InjectionSpecification::REIN) {
// Defaulting to water to satisfy -Wmaybe-uninitialized
BlackoilPhases::PhaseIndex phase = BlackoilPhases::Aqua;
switch (injSpec().injector_type_) {
case InjectionSpecification::WATER:
phase = BlackoilPhases::Aqua;
break;
case InjectionSpecification::GAS:
phase = BlackoilPhases::Vapour;
break;
case InjectionSpecification::OIL:
phase = BlackoilPhases::Liquid;
break;
}
const double total_produced = getTotalProductionFlow(well_surfacerates_phase, phase);
const double my_guide_rate = injectionGuideRate(true);
for (size_t i = 0; i < children_.size(); ++i) {
// Apply for all children.
// Note, we do _not_ want to call the applyProdGroupControl in this object,
// as that would check if we're under group control, something we're not.
const double children_guide_rate = children_[i]->injectionGuideRate(true);
#ifdef DIRTY_WELLCTRL_HACK
children_[i]->applyInjGroupControl(InjectionSpecification::RESV,
(children_guide_rate / my_guide_rate) * total_produced * injSpec().reinjection_fraction_target_,
false);
#else
children_[i]->applyInjGroupControl(InjectionSpecification::RATE,
(children_guide_rate / my_guide_rate) * total_produced * injSpec().reinjection_fraction_target_,
false);
#endif
}
}
else if (injSpec().control_mode_ == InjectionSpecification::VREP) {
double total_produced = 0.0;
if (phaseUsage().phase_used[BlackoilPhases::Aqua]) {
total_produced += getTotalProductionFlow(well_reservoirrates_phase, BlackoilPhases::Aqua);
}
if (phaseUsage().phase_used[BlackoilPhases::Liquid]) {
total_produced += getTotalProductionFlow(well_reservoirrates_phase, BlackoilPhases::Liquid);
}
if (phaseUsage().phase_used[BlackoilPhases::Vapour]) {
total_produced += getTotalProductionFlow(well_reservoirrates_phase, BlackoilPhases::Vapour);
}
const double my_guide_rate = injectionGuideRate(true);
for (size_t i = 0; i < children_.size(); ++i) {
// Apply for all children.
// Note, we do _not_ want to call the applyProdGroupControl in this object,
// as that would check if we're under group control, something we're not.
const double children_guide_rate = children_[i]->injectionGuideRate(true);
children_[i]->applyInjGroupControl(InjectionSpecification::RESV,
(children_guide_rate / my_guide_rate) * total_produced * injSpec().voidage_replacment_fraction_,
false);
}
}
}
// ============== WellNode members ============
WellNode::WellNode(const std::string& myname,
const ProductionSpecification& prod_spec,
const InjectionSpecification& inj_spec,
const PhaseUsage& phase_usage)
: WellsGroupInterface(myname, prod_spec, inj_spec, phase_usage),
wells_(0),
self_index_(-1),
group_control_index_(-1),
shut_well_(true) // This is default for now
{
}
bool WellNode::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
WellPhasesSummed& summed_phases)
{
// Report on our rates.
const int np = phaseUsage().num_phases;
for (int phase = 0; phase < np; ++phase) {
if (wells_->type[self_index_] == INJECTOR) {
summed_phases.res_inj_rates[phase] = well_reservoirrates_phase[np*self_index_ + phase];
summed_phases.surf_inj_rates[phase] = well_surfacerates_phase[np*self_index_ + phase];
} else {
summed_phases.res_prod_rates[phase] = well_reservoirrates_phase[np*self_index_ + phase];
summed_phases.surf_prod_rates[phase] = well_surfacerates_phase[np*self_index_ + phase];
}
}
// Check constraints.
bool is_producer = (wells_->type[self_index_] == PRODUCER);
const WellControls& ctrls = *wells_->ctrls[self_index_];
for (int ctrl_index = 0; ctrl_index < ctrls.num; ++ctrl_index) {
if (ctrl_index == ctrls.current || ctrl_index == group_control_index_) {
// We do not check constraints that either were used
// as the active control, or that come from group control.
continue;
}
bool ctrl_violated = false;
switch (ctrls.type[ctrl_index]) {
case BHP: {
const double my_well_bhp = well_bhp[self_index_];
const double my_target_bhp = ctrls.target[ctrl_index];
ctrl_violated = is_producer ? (my_target_bhp > my_well_bhp)
: (my_target_bhp < my_well_bhp);
if (ctrl_violated) {
std::cout << "BHP limit violated for well " << name() << ":\n";
std::cout << "BHP limit = " << my_target_bhp << std::endl;
std::cout << "BHP = " << my_well_bhp << std::endl;
}
break;
}
case RESERVOIR_RATE: {
double my_rate = 0.0;
for (int phase = 0; phase < np; ++phase) {
my_rate += ctrls.distr[np*ctrl_index + phase]*well_reservoirrates_phase[np*self_index_ + phase];
}
const double my_rate_target = ctrls.target[ctrl_index];
ctrl_violated = std::fabs(my_rate) - std::fabs(my_rate_target)> std::max(std::abs(my_rate), std::abs(my_rate_target))*1e-6;
if (ctrl_violated) {
std::cout << "RESERVOIR_RATE limit violated for well " << name() << ":\n";
std::cout << "rate limit = " << my_rate_target << std::endl;
std::cout << "rate = " << my_rate << std::endl;
}
break;
}
case SURFACE_RATE: {
double my_rate = 0.0;
for (int phase = 0; phase < np; ++phase) {
my_rate += ctrls.distr[np*ctrl_index + phase]*well_surfacerates_phase[np*self_index_ + phase];
}
const double my_rate_target = ctrls.target[ctrl_index];
ctrl_violated = std::fabs(my_rate) > std::fabs(my_rate_target);
if (ctrl_violated) {
std::cout << "SURFACE_RATE limit violated for well " << name() << ":\n";
std::cout << "rate limit = " << my_rate_target << std::endl;
std::cout << "rate = " << my_rate << std::endl;
}
break;
}
} // end of switch()
if (ctrl_violated) {
set_current_control(self_index_, ctrl_index, wells_);
return false;
}
}
return true;
}
WellsGroupInterface* WellNode::findGroup(const std::string& name_of_node)
{
if (name() == name_of_node) {
return this;
} else {
return NULL;
}
}
bool WellNode::isLeafNode() const
{
return true;
}
void WellNode::setWellsPointer(Wells* wells, int self_index)
{
wells_ = wells;
self_index_ = self_index;
}
int WellNode::numberOfLeafNodes()
{
return 1;
}
void WellNode::shutWell()
{
if (shut_well_) {
set_current_control(self_index_, -1, wells_);
}
else {
const double target = 0.0;
const double distr[3] = {1.0, 1.0, 1.0};
if (group_control_index_ < 0) {
// The well only had its own controls, no group controls.
append_well_controls(SURFACE_RATE, target, distr, self_index_, wells_);
group_control_index_ = wells_->ctrls[self_index_]->num - 1;
} else {
// We will now modify the last control, that
// "belongs to" the group control.
const int np = wells_->number_of_phases;
wells_->ctrls[self_index_]->type[group_control_index_] = SURFACE_RATE;
wells_->ctrls[self_index_]->target[group_control_index_] = target;
std::copy(distr, distr + np, wells_->ctrls[self_index_]->distr + np * group_control_index_);
}
set_current_control(self_index_, -1, wells_);
}
}
std::pair<WellNode*, double> WellNode::getWorstOffending(const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
ProductionSpecification::ControlMode mode)
{
const int np = phaseUsage().num_phases;
const int index = self_index_*np;
return std::make_pair<WellNode*, double>(this, rateByMode(&well_reservoirrates_phase[index],
&well_surfacerates_phase[index],
mode));
}
void WellNode::applyInjGroupControl(const InjectionSpecification::ControlMode control_mode,
const double target,
const bool forced)
{
// Not changing if we're not forced to change
if (!forced
&& (injSpec().control_mode_ != InjectionSpecification::GRUP && injSpec().control_mode_ != InjectionSpecification::NONE)) {
return;
}
if (!wells_->type[self_index_] == INJECTOR) {
ASSERT(target == 0.0);
return;
}
const double distr[3] = { 1.0, 1.0, 1.0 };
WellControlType wct;
switch (control_mode) {
case InjectionSpecification::RATE:
wct = SURFACE_RATE;
break;
case InjectionSpecification::RESV:
wct = RESERVOIR_RATE;
break;
default:
THROW("Group injection control mode not handled: " << control_mode);
}
if (group_control_index_ < 0) {
// The well only had its own controls, no group controls.
append_well_controls(wct, target, distr, self_index_, wells_);
group_control_index_ = wells_->ctrls[self_index_]->num - 1;
} else {
// We will now modify the last control, that
// "belongs to" the group control.
const int np = wells_->number_of_phases;
wells_->ctrls[self_index_]->type[group_control_index_] = wct;
wells_->ctrls[self_index_]->target[group_control_index_] = target;
std::copy(distr, distr + np, wells_->ctrls[self_index_]->distr + np*group_control_index_);
}
set_current_control(self_index_, group_control_index_, wells_);
}
/// Gets the total production flow of the given phase.
/// \param[in] phase_flows A vector containing rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[in] phase The phase for which to sum up.
double WellNode::getTotalProductionFlow(const std::vector<double>& phase_flows,
const BlackoilPhases::PhaseIndex phase)
{
if (type() == INJECTOR) {
return 0.0;
}
return phase_flows[self_index_*phaseUsage().num_phases + phaseUsage().phase_pos[phase]];
}
WellType WellNode::type() const {
return wells_->type[self_index_];
}
/// Applies explicit reinjection controls. This must be called at each timestep to be correct.
/// \param[in] well_reservoirrates_phase
/// A vector containing reservoir rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[in] well_surfacerates_phase
/// A vector containing surface rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
void WellNode::applyExplicitReinjectionControls(const std::vector<double>&,
const std::vector<double>&)
{
// Do nothing at well level.
}
void WellNode::applyProdGroupControl(const ProductionSpecification::ControlMode control_mode,
const double target,
const bool forced)
{
// Not changing if we're not forced to change
if (!forced && (prodSpec().control_mode_ != ProductionSpecification::GRUP
&& prodSpec().control_mode_ != ProductionSpecification::NONE)) {
std::cout << "Returning" << std::endl;
return;
}
if (!wells_->type[self_index_] == PRODUCER) {
ASSERT(target == 0.0);
return;
}
// We're a producer, so we need to negate the input
double ntarget = target;
double distr[3] = { 0.0, 0.0, 0.0 };
const int* phase_pos = phaseUsage().phase_pos;
const int* phase_used = phaseUsage().phase_used;
WellControlType wct;
switch (control_mode) {
case ProductionSpecification::ORAT:
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Liquid]) {
THROW("Oil phase not active and ORAT control specified.");
}
distr[phase_pos[BlackoilPhases::Liquid]] = 1.0;
break;
case ProductionSpecification::WRAT:
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Aqua]) {
THROW("Water phase not active and WRAT control specified.");
}
distr[phase_pos[BlackoilPhases::Aqua]] = 1.0;
break;
case ProductionSpecification::GRAT:
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Vapour]) {
THROW("Gas phase not active and GRAT control specified.");
}
distr[phase_pos[BlackoilPhases::Vapour]] = 1.0;
break;
case ProductionSpecification::LRAT:
std::cout << "applying rate" << std::endl;
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Liquid]) {
THROW("Oil phase not active and LRAT control specified.");
}
if (!phase_used[BlackoilPhases::Aqua]) {
THROW("Water phase not active and LRAT control specified.");
}
distr[phase_pos[BlackoilPhases::Liquid]] = 1.0;
distr[phase_pos[BlackoilPhases::Aqua]] = 1.0;
break;
case ProductionSpecification::RESV:
distr[0] = distr[1] = distr[2] = 1.0;
wct = RESERVOIR_RATE;
break;
default:
THROW("Group production control mode not handled: " << control_mode);
}
if (group_control_index_ < 0) {
// The well only had its own controls, no group controls.
append_well_controls(wct, ntarget, distr, self_index_, wells_);
group_control_index_ = wells_->ctrls[self_index_]->num - 1;
} else {
// We will now modify the last control, that
// "belongs to" the group control.
const int np = wells_->number_of_phases;
wells_->ctrls[self_index_]->type[group_control_index_] = wct;
wells_->ctrls[self_index_]->target[group_control_index_] = ntarget;
std::copy(distr, distr + np, wells_->ctrls[self_index_]->distr + np*group_control_index_);
}
set_current_control(self_index_, group_control_index_, wells_);
}
void WellNode::applyProdGroupControls()
{
// Empty
}
void WellNode::applyInjGroupControls()
{
// Empty
}
/// Calculates the production guide rate for the group.
/// \param[in] only_group If true, will only accumelate guide rates for
/// wells under group control
double WellNode::productionGuideRate(bool only_group)
{
if (!only_group || prodSpec().control_mode_ == ProductionSpecification::GRUP) {
std::cout << prodSpec().guide_rate_ << std::endl;
return prodSpec().guide_rate_;
}
return 0.0;
}
/// Calculates the injection guide rate for the group.
/// \param[in] only_group If true, will only accumelate guide rates for
/// wells under group control
double WellNode::injectionGuideRate(bool only_group)
{
if (!only_group || injSpec().control_mode_ == InjectionSpecification::GRUP) {
return injSpec().guide_rate_;
}
return 0.0;
}
namespace
{
InjectionSpecification::InjectorType toInjectorType(std::string type)
{
if (type == "OIL") {
return InjectionSpecification::OIL;
}
if (type == "WATER") {
return InjectionSpecification::WATER;
}
if (type == "GAS") {
return InjectionSpecification::GAS;
}
THROW("Unknown type " << type << ", could not convert to SurfaceComponent");
}
#define HANDLE_ICM(x) \
if (type == #x) { \
return InjectionSpecification::x; \
}
InjectionSpecification::ControlMode toInjectionControlMode(std::string type)
{
HANDLE_ICM(NONE);
HANDLE_ICM(RATE);
HANDLE_ICM(RESV);
HANDLE_ICM(BHP);
HANDLE_ICM(THP);
HANDLE_ICM(REIN);
HANDLE_ICM(VREP);
HANDLE_ICM(GRUP);
HANDLE_ICM(FLD);
THROW("Unknown type " << type << ", could not convert to InjectionSpecification::ControlMode.");
}
#undef HANDLE_ICM
#define HANDLE_PCM(x) \
if (type == #x) { \
return ProductionSpecification::x; \
}
ProductionSpecification::ControlMode toProductionControlMode(std::string type)
{
HANDLE_PCM(NONE);
HANDLE_PCM(ORAT);
HANDLE_PCM(WRAT);
HANDLE_PCM(GRAT);
HANDLE_PCM(LRAT);
HANDLE_PCM(CRAT);
HANDLE_PCM(RESV);
HANDLE_PCM(PRBL);
HANDLE_PCM(BHP);
HANDLE_PCM(THP);
HANDLE_PCM(GRUP);
HANDLE_PCM(FLD);
THROW("Unknown type " << type << ", could not convert to ProductionSpecification::ControlMode.");
}
#undef HANDLE_PCM
ProductionSpecification::Procedure toProductionProcedure(std::string type)
{
if (type == "NONE") {
return ProductionSpecification::NONE_P;
}
if (type == "RATE") {
return ProductionSpecification::RATE;
}
if (type == "WELL") {
return ProductionSpecification::WELL;
}
THROW("Unknown type " << type << ", could not convert to ControlMode.");
}
} // anonymous namespace
std::tr1::shared_ptr<WellsGroupInterface> createWellsGroup(const std::string& name,
const EclipseGridParser& deck)
{
PhaseUsage phase_usage = phaseUsageFromDeck(deck);
std::tr1::shared_ptr<WellsGroupInterface> return_value;
// First we need to determine whether it's a group or just a well:
bool isWell = false;
if (deck.hasField("WELSPECS")) {
WELSPECS wspecs = deck.getWELSPECS();
for (size_t i = 0; i < wspecs.welspecs.size(); i++) {
if (wspecs.welspecs[i].name_ == name) {
isWell = true;
break;
}
}
}
// For now, assume that if it isn't a well, it's a group
if (isWell) {
ProductionSpecification production_specification;
InjectionSpecification injection_specification;
if (deck.hasField("WCONINJE")) {
WCONINJE wconinje = deck.getWCONINJE();
for (size_t i = 0; i < wconinje.wconinje.size(); i++) {
if (wconinje.wconinje[i].well_ == name) {
WconinjeLine line = wconinje.wconinje[i];
injection_specification.BHP_limit_ = line.BHP_limit_;
injection_specification.injector_type_ = toInjectorType(line.injector_type_);
injection_specification.control_mode_ = toInjectionControlMode(line.control_mode_);
injection_specification.surface_flow_max_rate_ = line.surface_flow_max_rate_;
injection_specification.reservoir_flow_max_rate_ = line.reservoir_flow_max_rate_;
production_specification.guide_rate_ = 0.0; // We know we're not a producer
}
}
}
if (deck.hasField("WCONPROD")) {
WCONPROD wconprod = deck.getWCONPROD();
#if THIS_STATEMENT_IS_REALLY_NEEDED
std::cout << wconprod.wconprod.size() << std::endl;
#endif
for (size_t i = 0; i < wconprod.wconprod.size(); i++) {
if (wconprod.wconprod[i].well_ == name) {
WconprodLine line = wconprod.wconprod[i];
production_specification.BHP_limit_ = line.BHP_limit_;
production_specification.reservoir_flow_max_rate_ = line.reservoir_flow_max_rate_;
production_specification.oil_max_rate_ = line.oil_max_rate_;
production_specification.control_mode_ = toProductionControlMode(line.control_mode_);
production_specification.water_max_rate_ = line.water_max_rate_;
injection_specification.guide_rate_ = 0.0; // we know we're not an injector
}
}
}
return_value.reset(new WellNode(name, production_specification, injection_specification, phase_usage));
} else {
InjectionSpecification injection_specification;
if (deck.hasField("GCONINJE")) {
GCONINJE gconinje = deck.getGCONINJE();
for (size_t i = 0; i < gconinje.gconinje.size(); i++) {
if (gconinje.gconinje[i].group_ == name) {
GconinjeLine line = gconinje.gconinje[i];
injection_specification.injector_type_ = toInjectorType(line.injector_type_);
injection_specification.control_mode_ = toInjectionControlMode(line.control_mode_);
injection_specification.surface_flow_max_rate_ = line.surface_flow_max_rate_;
injection_specification.reservoir_flow_max_rate_ = line.resv_flow_max_rate_;
injection_specification.reinjection_fraction_target_ = line.reinjection_fraction_target_;
injection_specification.voidage_replacment_fraction_ = line.voidage_replacement_fraction_;
}
}
}
ProductionSpecification production_specification;
if (deck.hasField("GCONPROD")) {
std::cout << "Searching in gconprod " << std::endl;
std::cout << "name= " << name << std::endl;
GCONPROD gconprod = deck.getGCONPROD();
for (size_t i = 0; i < gconprod.gconprod.size(); i++) {
if (gconprod.gconprod[i].group_ == name) {
GconprodLine line = gconprod.gconprod[i];
production_specification.oil_max_rate_ = line.oil_max_rate_;
std::cout << "control_mode = " << line.control_mode_ << std::endl;
production_specification.control_mode_ = toProductionControlMode(line.control_mode_);
production_specification.water_max_rate_ = line.water_max_rate_;
production_specification.gas_max_rate_ = line.gas_max_rate_;
production_specification.liquid_max_rate_ = line.liquid_max_rate_;
production_specification.procedure_ = toProductionProcedure(line.procedure_);
production_specification.reservoir_flow_max_rate_ = line.resv_max_rate_;
}
}
}
return_value.reset(new WellsGroup(name, production_specification, injection_specification, phase_usage));
}
return return_value;
}
}