opm-core/opm/core/props/BlackoilPropertiesFromDeck.hpp
Markus Blatt d6f63f7d0c Makes BlackoilPropertiesFromDeck copyable.
We need this for the parallel sim_fibo_ad_cp, where we will need
to point to the same parts in two copies without duplicating data.
2015-02-05 15:41:02 +01:00

276 lines
13 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILPROPERTIESFROMDECK_HEADER_INCLUDED
#define OPM_BLACKOILPROPERTIESFROMDECK_HEADER_INCLUDED
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/rock/RockFromDeck.hpp>
#include <opm/core/props/pvt/BlackoilPvtProperties.hpp>
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <memory>
struct UnstructuredGrid;
namespace Opm
{
/// Concrete class implementing the blackoil property interface,
/// reading all data and properties from eclipse deck input.
class BlackoilPropertiesFromDeck : public BlackoilPropertiesInterface
{
public:
/// Initialize from deck and grid.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
BlackoilPropertiesFromDeck(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
const UnstructuredGrid& grid, bool init_rock=true );
/// Initialize from deck, grid and parameters.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] param Parameters. Accepted parameters include:
/// pvt_tab_size (200) number of uniform sample points for dead-oil pvt tables.
/// sat_tab_size (200) number of uniform sample points for saturation tables.
/// threephase_model("simple") three-phase relperm model (accepts "simple" and "stone2").
/// For both size parameters, a 0 or negative value indicates that no spline fitting is to
/// be done, and the input fluid data used directly for linear interpolation.
BlackoilPropertiesFromDeck(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param,
bool init_rock=true);
template<class CentroidIterator>
BlackoilPropertiesFromDeck(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const CentroidIterator& begin_cell_centroids,
int dimension,
bool init_rock=true);
template<class CentroidIterator>
BlackoilPropertiesFromDeck(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const CentroidIterator& begin_cell_centroids,
int dimension,
const parameter::ParameterGroup& param,
bool init_rock=true);
/// Destructor.
virtual ~BlackoilPropertiesFromDeck();
// ---- Rock interface ----
/// \return D, the number of spatial dimensions.
virtual int numDimensions() const;
/// \return N, the number of cells.
virtual int numCells() const;
/// Return an array containing the PVT table index for each
/// grid cell
virtual const int* cellPvtRegionIndex() const
{ return &cellPvtRegionIdx_[0]; }
/// \return Array of N porosity values.
virtual const double* porosity() const;
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
virtual const double* permeability() const;
// ---- Fluid interface ----
/// \return P, the number of phases (also the number of components).
virtual int numPhases() const;
/// \return Object describing the active phases.
virtual PhaseUsage phaseUsage() const;
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] mu Array of nP viscosity values, array must be valid before calling.
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
/// array must be valid before calling.
virtual void viscosity(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* mu,
double* dmudp) const;
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] A Array of nP^2 values, array must be valid before calling.
/// The P^2 values for a cell give the matrix A = RB^{-1} which
/// relates z to u by z = Au. The matrices are output in Fortran order.
/// \param[out] dAdp If non-null: array of nP^2 matrix derivative values,
/// array must be valid before calling. The matrices are output
/// in Fortran order.
virtual void matrix(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* A,
double* dAdp) const;
/// Densities of stock components at reservoir conditions.
/// \param[in] n Number of data points.
/// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the
/// matrix A = RB^{-1} which relates z to u by z = Au. The matrices
/// are assumed to be in Fortran order, and are typically the result
/// of a call to the method matrix().
/// \param[in] cells The index of the grid cell of each data point.
/// \param[out] rho Array of nP density values, array must be valid before calling.
virtual void density(const int n,
const double* A,
const int* cells,
double* rho) const;
/// Densities of stock components at surface conditions.
/// \return Array of P density values.
virtual const double* surfaceDensity(int cellIdx = 0) const;
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
virtual void relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const;
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
virtual void capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
virtual void satRange(const int n,
const int* cells,
double* smin,
double* smax) const;
/// Update capillary pressure scaling according to pressure diff. and initial water saturation.
/// \param[in] cell Cell index.
/// \param[in] pcow P_oil - P_water.
/// \param[in/out] swat Water saturation. / Possibly modified Water saturation.
virtual void swatInitScaling(const int cell,
const double pcow,
double & swat);
private:
int getTableIndex_(const int* pvtTableIdx, int cellIdx) const
{
if (!pvtTableIdx)
return 0;
return pvtTableIdx[cellIdx];
}
template<class CentroidIterator>
void init(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const CentroidIterator& begin_cell_centroids,
int dimension,
bool init_rock);
template<class CentroidIterator>
void init(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const CentroidIterator& begin_cell_centroids,
int dimension,
const parameter::ParameterGroup& param,
bool init_rock);
RockFromDeck rock_;
std::vector<int> cellPvtRegionIdx_;
BlackoilPvtProperties pvt_;
std::shared_ptr<SaturationPropsInterface> satprops_;
mutable std::vector<double> B_;
mutable std::vector<double> dB_;
mutable std::vector<double> R_;
mutable std::vector<double> dR_;
};
} // namespace Opm
#include "BlackoilPropertiesFromDeck_impl.hpp"
#endif // OPM_BLACKOILPROPERTIESFROMDECK_HEADER_INCLUDED