opm-core/examples/spu_2p.cpp
2012-03-28 16:39:04 +02:00

842 lines
33 KiB
C++

/*===========================================================================
//
// File: spu_2p.cpp
//
// Created: 2011-10-05 10:29:01+0200
//
// Authors: Ingeborg S. Ligaarden <Ingeborg.Ligaarden@sintef.no>
// Jostein R. Natvig <Jostein.R.Natvig@sintef.no>
// Halvor M. Nilsen <HalvorMoll.Nilsen@sintef.no>
// Atgeirr F. Rasmussen <atgeirr@sintef.no>
// Bård Skaflestad <Bard.Skaflestad@sintef.no>
//
//==========================================================================*/
/*
Copyright 2011, 2012 SINTEF ICT, Applied Mathematics.
Copyright 2011, 2012 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/GridManager.hpp>
#include <opm/core/newwells.h>
#include <opm/core/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/fluid/SimpleFluid2p.hpp>
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
// #define EXPERIMENT_ISTL
#ifdef EXPERIMENT_ISTL
#include <opm/core/linalg/LinearSolverIstl.hpp>
#endif
#include <opm/core/transport/transport_source.h>
#include <opm/core/transport/CSRMatrixUmfpackSolver.hpp>
#include <opm/core/transport/NormSupport.hpp>
#include <opm/core/transport/ImplicitAssembly.hpp>
#include <opm/core/transport/ImplicitTransport.hpp>
#include <opm/core/transport/JacobianSystem.hpp>
#include <opm/core/transport/CSRMatrixBlockAssembler.hpp>
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
#include <opm/core/ColumnExtract.hpp>
#include <opm/core/transport/GravityColumnSolver.hpp>
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
#include <boost/filesystem/convenience.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <cassert>
#include <cstddef>
#include <algorithm>
#include <tr1/array>
#include <functional>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <iterator>
#include <vector>
class ReservoirState
{
public:
ReservoirState(const UnstructuredGrid* g, const double init_sat, const double init_p)
: press_ (g->number_of_cells, 0.0),
fpress_(g->number_of_faces, 0.0),
flux_ (g->number_of_faces, 0.0),
sat_ (2 * g->number_of_cells, 0.0)
{
for (int cell = 0; cell < g->number_of_cells; ++cell) {
sat_[2*cell] = init_sat;
sat_[2*cell + 1] = 1.0 - init_sat;
press_[cell] = init_p;
}
}
enum ExtremalSat { MinSat, MaxSat };
void setToMinimumWaterSat(const Opm::IncompPropertiesInterface& props)
{
const int n = props.numCells();
std::vector<int> cells(n);
for (int i = 0; i < n; ++i) {
cells[i] = i;
}
setWaterSat(cells, props, MinSat);
}
void setWaterSat(const std::vector<int>& cells,
const Opm::IncompPropertiesInterface& props,
ExtremalSat es)
{
const int n = cells.size();
std::vector<double> smin(2*n);
std::vector<double> smax(2*n);
props.satRange(n, &cells[0], &smin[0], &smax[0]);
const double* svals = (es == MinSat) ? &smin[0] : &smax[0];
for (int ci = 0; ci < n; ++ci) {
const int cell = cells[ci];
sat_[2*cell] = svals[2*ci];
sat_[2*cell + 1] = 1.0 - sat_[2*cell];
}
}
// Initialize saturations so that there is water below woc,
// and oil above.
// TODO: add 'anitialiasing', obtaining a more precise woc
// by f. ex. subdividing cells cut by the woc.
void initWaterOilContact(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const double woc)
{
// Find out which cells should have water and which should have oil.
std::vector<int> oil;
std::vector<int> water;
const int num_cells = grid.number_of_cells;
oil.reserve(num_cells);
water.reserve(num_cells);
const int dim = grid.dimensions;
for (int c = 0; c < num_cells; ++c) {
const double z = grid.cell_centroids[dim*c + dim - 1];
if (z > woc) {
// Z is depth, we put water in the deepest parts
// (even if oil is heavier...).
water.push_back(c);
} else {
oil.push_back(c);
}
}
// Set saturations.
setWaterSat(oil, props, MinSat);
setWaterSat(water, props, MaxSat);
}
int numPhases() const { return sat_.size()/press_.size(); }
std::vector<double>& pressure () { return press_ ; }
std::vector<double>& facepressure() { return fpress_; }
std::vector<double>& faceflux () { return flux_ ; }
std::vector<double>& saturation () { return sat_ ; }
const std::vector<double>& pressure () const { return press_ ; }
const std::vector<double>& facepressure() const { return fpress_; }
const std::vector<double>& faceflux () const { return flux_ ; }
const std::vector<double>& saturation () const { return sat_ ; }
private:
std::vector<double> press_ ;
std::vector<double> fpress_;
std::vector<double> flux_ ;
std::vector<double> sat_ ;
};
static void outputState(const UnstructuredGrid& grid,
const ReservoirState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
THROW("Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
watercut.write(os);
}
// --------------- Types needed to define transport solver ---------------
class SimpleFluid2pWrappingProps
{
public:
SimpleFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props)
: props_(props),
smin_(props.numCells()*props.numPhases()),
smax_(props.numCells()*props.numPhases())
{
if (props.numPhases() != 2) {
THROW("SimpleFluid2pWrapper requires 2 phases.");
}
const int num_cells = props.numCells();
std::vector<int> cells(num_cells);
for (int c = 0; c < num_cells; ++c) {
cells[c] = c;
}
props.satRange(num_cells, &cells[0], &smin_[0], &smax_[0]);
}
double density(int phase) const
{
return props_.density()[phase];
}
template <class Sat,
class Mob,
class DMob>
void mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const
{
props_.relperm(1, &s[0], &c, &mob[0], &dmob[0]);
const double* mu = props_.viscosity();
mob[0] /= mu[0];
mob[1] /= mu[1];
// Recall that we use Fortran ordering for kr derivatives,
// therefore dmob[i*2 + j] is row j and column i of the
// matrix.
// Each row corresponds to a kr function, so which mu to
// divide by also depends on the row, j.
dmob[0*2 + 0] /= mu[0];
dmob[0*2 + 1] /= mu[1];
dmob[1*2 + 0] /= mu[0];
dmob[1*2 + 1] /= mu[1];
}
template <class Sat,
class Pcap,
class DPcap>
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const
{
double pcow[2];
double dpcow[4];
props_.capPress(1, &s[0], &c, pcow, dpcow);
pcap = pcow[0];
ASSERT(pcow[1] == 0.0);
dpcap = dpcow[0];
ASSERT(dpcow[1] == 0.0);
ASSERT(dpcow[2] == 0.0);
ASSERT(dpcow[3] == 0.0);
}
double s_min(int c) const
{
return smin_[2*c + 0];
}
double s_max(int c) const
{
return smax_[2*c + 0];
}
private:
const Opm::IncompPropertiesInterface& props_;
std::vector<double> smin_;
std::vector<double> smax_;
};
typedef SimpleFluid2pWrappingProps TwophaseFluid;
typedef Opm::SinglePointUpwindTwoPhase<TwophaseFluid> TransportModel;
using namespace Opm::ImplicitTransportDefault;
typedef NewtonVectorCollection< ::std::vector<double> > NVecColl;
typedef JacobianSystem < struct CSRMatrix, NVecColl > JacSys;
template <class Vector>
class MaxNorm {
public:
static double
norm(const Vector& v) {
return AccumulationNorm <Vector, MaxAbs>::norm(v);
}
};
typedef Opm::ImplicitTransport<TransportModel,
JacSys ,
MaxNorm ,
VectorNegater ,
VectorZero ,
MatrixZero ,
VectorAssign > TransportSolver;
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
Opm::parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// Reading various control parameters.
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
const bool use_reorder = param.getDefault("use_reorder", true);
const bool output = param.getDefault("output", true);
std::string output_dir;
int output_interval = 1;
if (output) {
output_dir = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir);
create_directories(fpath);
output_interval = param.getDefault("output_interval", output_interval);
}
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
boost::scoped_ptr<Opm::GridManager> grid;
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
boost::scoped_ptr<Opm::WellsManager> wells;
boost::scoped_ptr<Opm::RockCompressibility> rock_comp;
Opm::SimulatorTimer simtimer;
double water_oil_contact = 0.0;
bool woc_set = false;
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
Opm::EclipseGridParser deck(deck_filename);
// Grid init
grid.reset(new Opm::GridManager(deck));
// Rock and fluid init
const int* gc = grid->c_grid()->global_cell;
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
// Wells init.
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
// Timer init.
if (deck.hasField("TSTEP")) {
simtimer.init(deck);
} else {
simtimer.init(param);
}
// Water-oil contact.
if (deck.hasField("EQUIL")) {
water_oil_contact = deck.getEQUIL().equil[0].water_oil_contact_depth_;
woc_set = true;
} else if (param.has("water_oil_contact")) {
water_oil_contact = param.get<double>("water_oil_contact");
woc_set = true;
}
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(deck));
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Wells init.
wells.reset(new Opm::WellsManager());
// Timer init.
simtimer.init(param);
if (param.has("water_oil_contact")) {
water_oil_contact = param.get<double>("water_oil_contact");
woc_set = true;
}
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(param));
}
// Extra fluid init for transport solver.
TwophaseFluid fluid(*props);
// Gravity init.
double gravity[3] = { 0.0 };
double g = param.getDefault("gravity", 0.0);
bool use_gravity = g != 0.0;
if (use_gravity) {
gravity[grid->c_grid()->dimensions - 1] = g;
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
bool use_segregation_split = false;
bool use_column_solver = false;
bool use_gauss_seidel_gravity = false;
if (use_gravity && use_reorder) {
use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split);
if (use_segregation_split) {
use_column_solver = param.getDefault("use_column_solver", use_column_solver);
if (use_column_solver) {
use_gauss_seidel_gravity = param.getDefault("use_gauss_seidel_gravity", use_gauss_seidel_gravity);
}
}
}
// Check that rock compressibility is not used with solvers that do not handle it.
int nl_pressure_maxiter = 0;
double nl_pressure_tolerance = 0.0;
if (rock_comp->isActive()) {
if (!use_reorder) {
THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet.");
}
if (use_segregation_split) {
if (!use_gauss_seidel_gravity) {
THROW("For gravity segregation splitting, only use_gauss_seidel_gravity=true supports rock compressibility.");
}
}
nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10);
nl_pressure_tolerance = param.getDefault("nl_pressure_tolerance", 1.0); // in Pascal
}
// State-related and source-related variables init.
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> totmob;
std::vector<double> omega; // Will remain empty if no gravity.
std::vector<double> rc; // Will remain empty if no rock compressibility.
double init_sat = param.getDefault("init_sat", 0.0);
double init_p = param.getDefault("init_p_bar", 235)*Opm::unit::barsa;
ReservoirState state(grid->c_grid(), init_sat, init_p);
if (!param.has("init_sat")) {
state.setToMinimumWaterSat(*props);
}
// Extra rock init.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), *props, *rock_comp, state.pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), *props, porevol);
}
double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
// We need a separate reorder_sat, because the reorder
// code expects a scalar sw, not both sw and so.
std::vector<double> reorder_sat(num_cells);
std::vector<double> src(num_cells, 0.0);
int scenario = param.getDefault("scenario", woc_set ? 4 : 0);
switch (scenario) {
case 0:
{
std::cout << "==== Scenario 0: simple wells or single-cell source and sink.\n";
if (wells->c_wells()) {
Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
} else {
double flow_per_sec = 0.1*tot_porevol_init/Opm::unit::day;
if (param.has("injection_rate_per_day")) {
flow_per_sec = param.get<double>("injection_rate_per_day")/Opm::unit::day;
}
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
break;
}
case 1:
{
std::cout << "==== Scenario 1: half source, half sink.\n";
double flow_per_sec = 0.1*porevol[0]/Opm::unit::day;
std::fill(src.begin(), src.begin() + src.size()/2, flow_per_sec);
std::fill(src.begin() + src.size()/2, src.end(), -flow_per_sec);
break;
}
case 2:
{
std::cout << "==== Scenario 2: gravity convection.\n";
if (!use_gravity) {
std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl;
}
if (use_deck) {
std::cout << "**** Warning: running gravity convection scenario, which expects a cartesian grid."
<< std::endl;
}
if (grid->c_grid()->cartdims[2] <= 1) {
std::cout << "**** Warning: running gravity convection scenario, which expects nz > 1." << std::endl;
}
std::vector<int> left_cells;
left_cells.reserve(num_cells/2);
const int *glob_cell = grid->c_grid()->global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int* cd = grid->c_grid()->cartdims;
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
bool left = (gc % cd[0]) < cd[0]/2;
if (left) {
left_cells.push_back(cell);
}
}
state.setWaterSat(left_cells, *props, ReservoirState::MaxSat);
break;
}
case 3:
{
std::cout << "==== Scenario 3: gravity segregation.\n";
if (!use_gravity) {
std::cout << "**** Warning: running gravity segregation scenario, but gravity is zero." << std::endl;
}
if (use_deck) {
std::cout << "**** Warning: running gravity segregation scenario, which expects a cartesian grid."
<< std::endl;
}
if (grid->c_grid()->cartdims[2] <= 1) {
std::cout << "**** Warning: running gravity segregation scenario, which expects nz > 1." << std::endl;
}
std::vector<int> top_cells;
const int *glob_cell = grid->c_grid()->global_cell;
// Water on top
for (int cell = 0; cell < num_cells; ++cell) {
const int* cd = grid->c_grid()->cartdims;
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
bool top = (gc / cd[0] / cd[1]) < cd[2]/2;
if (top) {
top_cells.push_back(cell);
}
}
state.setWaterSat(top_cells, *props, ReservoirState::MaxSat);
break;
}
case 4:
{
std::cout << "==== Scenario 4: water-oil contact and simple wells or sources\n";
if (!use_gravity) {
std::cout << "**** Warning: initializing segregated water and oil zones, but gravity is zero." << std::endl;
}
state.initWaterOilContact(*grid->c_grid(), *props, water_oil_contact);
if (wells->c_wells()) {
Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
} else {
double flow_per_sec = 0.01*tot_porevol_init/Opm::unit::day;
src[0] = flow_per_sec;
src[grid->c_grid()->number_of_cells - 1] = -flow_per_sec;
}
break;
}
default:
{
THROW("==== Scenario " << scenario << " is unknown.");
}
}
TransportSource* tsrc = create_transport_source(2, 2);
double ssrc[] = { 1.0, 0.0 };
double ssink[] = { 0.0, 1.0 };
double zdummy[] = { 0.0, 0.0 };
for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssrc, zdummy, tsrc);
} else if (src[cell] < 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssink, zdummy, tsrc);
}
}
std::vector<double> reorder_src = src;
// Boundary conditions.
Opm::FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), Opm::FlowBCManager::Side(pside), pside_pressure);
}
// Solvers init.
// Pressure solver.
#ifdef EXPERIMENT_ISTL
Opm::LinearSolverIstl linsolver(param);
#else
Opm::LinearSolverUmfpack linsolver;
#endif // EXPERIMENT_ISTL
const double *grav = use_gravity ? &gravity[0] : 0;
Opm::IncompTpfa psolver(*grid->c_grid(), props->permeability(), grav, linsolver);
// Reordering solver.
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
Opm::TransportModelTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
if (use_gauss_seidel_gravity) {
reorder_model.initGravity(grav);
}
// Non-reordering solver.
TransportModel model (fluid, *grid->c_grid(), porevol, grav, guess_old_solution);
if (use_gravity) {
model.initGravityTrans(*grid->c_grid(), psolver.getHalfTrans());
}
TransportSolver tsolver(model);
// Column-based gravity segregation solver.
typedef std::pair<std::vector<int>, std::vector<std::vector<int> > > ColMap;
ColMap columns;
if (use_column_solver) {
Opm::extractColumn(*grid->c_grid(), columns);
}
Opm::GravityColumnSolver<TransportModel> colsolver(model, *grid->c_grid(), nl_tolerance, nl_maxiter);
// Control init.
Opm::ImplicitTransportDetails::NRReport rpt;
Opm::ImplicitTransportDetails::NRControl ctrl;
if (!use_reorder || use_segregation_split) {
ctrl.max_it = param.getDefault("max_it", 20);
ctrl.verbosity = param.getDefault("verbosity", 0);
ctrl.max_it_ls = param.getDefault("max_it_ls", 5);
}
// Linear solver init.
using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
CSRMatrixUmfpackSolver linsolve;
// The allcells vector is used in calls to computeTotalMobility()
// and computeTotalMobilityOmega().
std::vector<int> allcells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells[cell] = cell;
}
// Warn if any parameters are unused.
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
// Write parameters used for later reference.
if (output) {
param.writeParam(output_dir + "/spu_2p.param");
}
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
double init_satvol[2] = { 0.0 };
double satvol[2] = { 0.0 };
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
for (; !simtimer.done(); ++simtimer) {
// Report timestep and (optionally) write state to disk.
simtimer.report(std::cout);
if (output && (simtimer.currentStepNum() % output_interval == 0)) {
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
}
// Solve pressure.
if (use_gravity) {
computeTotalMobilityOmega(*props, allcells, state.saturation(), totmob, omega);
} else {
computeTotalMobility(*props, allcells, state.saturation(), totmob);
}
pressure_timer.start();
if (rock_comp->isActive()) {
rc.resize(num_cells);
std::vector<double> initial_pressure = state.pressure();
std::vector<double> prev_pressure;
for (int iter = 0; iter < nl_pressure_maxiter; ++iter) {
prev_pressure = state.pressure();
for (int cell = 0; cell < num_cells; ++cell) {
rc[cell] = rock_comp->rockComp(state.pressure()[cell]);
}
state.pressure() = initial_pressure;
psolver.solve(totmob, omega, src, bcs.c_bcs(), porevol, rc, simtimer.currentStepLength(),
state.pressure(), state.faceflux());
double max_change = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
max_change = std::max(max_change, std::fabs(state.pressure()[cell] - prev_pressure[cell]));
}
std::cout << "Pressure iter " << iter << " max change = " << max_change << std::endl;
if (max_change < nl_pressure_tolerance) {
break;
}
}
computePorevolume(*grid->c_grid(), *props, *rock_comp, state.pressure(), porevol);
} else {
psolver.solve(totmob, omega, src, bcs.c_bcs(), state.pressure(), state.faceflux());
}
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Process transport sources (to include bdy terms).
if (use_reorder) {
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0, reorder_src);
} else {
clear_transport_source(tsrc);
for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssrc, zdummy, tsrc);
} else if (src[cell] < 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssink, zdummy, tsrc);
}
}
}
// Solve transport.
transport_timer.start();
if (use_reorder) {
Opm::toWaterSat(state.saturation(), reorder_sat);
reorder_model.solve(&state.faceflux()[0], &porevol[0], &reorder_src[0],
simtimer.currentStepLength(), &reorder_sat[0]);
Opm::toBothSat(reorder_sat, state.saturation());
Opm::computeInjectedProduced(*props, state.saturation(), src, simtimer.currentStepLength(), injected, produced);
if (use_segregation_split) {
if (use_column_solver) {
if (use_gauss_seidel_gravity) {
reorder_model.solveGravity(columns, &porevol[0], simtimer.currentStepLength(), reorder_sat);
Opm::toBothSat(reorder_sat, state.saturation());
} else {
colsolver.solve(columns, simtimer.currentStepLength(), state.saturation());
}
} else {
std::vector<double> fluxes = state.faceflux();
std::fill(state.faceflux().begin(), state.faceflux().end(), 0.0);
tsolver.solve(*grid->c_grid(), tsrc, simtimer.currentStepLength(), ctrl, state, linsolve, rpt);
std::cout << rpt;
state.faceflux() = fluxes;
}
}
} else {
tsolver.solve(*grid->c_grid(), tsrc, simtimer.currentStepLength(), ctrl, state, linsolve, rpt);
std::cout << rpt;
Opm::computeInjectedProduced(*props, state.saturation(), src, simtimer.currentStepLength(), injected, produced);
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
// Opm::computeInjectedProduced(*props, state.saturation(), src, simtimer.currentStepLength(), injected, produced);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
std::cout.precision(5);
const int width = 18;
std::cout << "\nVolume balance report (all numbers relative to total pore volume).\n";
std::cout << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
std::cout << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
std::cout << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
std::cout << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
std::cout << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
std::cout << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
std::cout << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::endl;
std::cout.precision(8);
watercut.push(simtimer.currentTime() + simtimer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
}
total_timer.stop();
std::cout << "\n\n================ End of simulation ===============\n"
<< "Total time taken: " << total_timer.secsSinceStart()
<< "\n Pressure time: " << ptime
<< "\n Transport time: " << ttime << std::endl;
if (output) {
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
outputWaterCut(watercut, output_dir);
}
destroy_transport_source(tsrc);
}