4544000065
This avoids copying a vector of size grid_.numFaces().
329 lines
12 KiB
C++
329 lines
12 KiB
C++
/*
|
|
Copyright 2010 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef OPM_HYBRIDPRESSURESOLVER_HEADER_INCLUDED
|
|
#define OPM_HYBRIDPRESSURESOLVER_HEADER_INCLUDED
|
|
|
|
#include <opm/core/pressure/fsh.h>
|
|
#include <opm/core/linalg/sparse_sys.h>
|
|
#include <opm/core/pressure/mimetic/mimetic.h>
|
|
#include <opm/core/GridAdapter.hpp>
|
|
#include <stdexcept>
|
|
|
|
|
|
/// @brief
|
|
/// Encapsulates the ifsh (= incompressible flow solver hybrid) solver modules.
|
|
class HybridPressureSolver
|
|
{
|
|
public:
|
|
/// @brief
|
|
/// Default constructor, does nothing.
|
|
HybridPressureSolver()
|
|
: state_(Uninitialized), data_(0)
|
|
{
|
|
}
|
|
|
|
/// @brief
|
|
/// Destructor.
|
|
~HybridPressureSolver()
|
|
{
|
|
fsh_destroy(data_);
|
|
}
|
|
|
|
/// @brief
|
|
/// Initialize the solver's structures for a given grid (at some point also well pattern).
|
|
/// @tparam Grid This must conform to the SimpleGrid concept.
|
|
/// @param grid The grid object.
|
|
/// @param perm Permeability. It should contain dim*dim entries (a full tensor) for each cell.
|
|
/// @param gravity Array containing gravity acceleration vector. It should contain dim entries.
|
|
template <class Grid>
|
|
void init(const Grid& grid, const double* perm, const double* gravity)
|
|
{
|
|
// Build C grid structure.
|
|
grid_.init(grid);
|
|
|
|
// Checking if grids are properly initialized. Move this code to a test somewhere.
|
|
// GridAdapter grid2;
|
|
// grid2.init(grid_);
|
|
// if (grid2 == grid_) {
|
|
// std::cout << "Grids are equal." << std::endl;
|
|
// } else {
|
|
// std::cout << "Grids are NOT equal." << std::endl;
|
|
// }
|
|
|
|
// Build (empty for now) C well structure.
|
|
well_t* w = 0;
|
|
|
|
// Initialize ifsh data.
|
|
data_ = ifsh_construct(grid_.c_grid(), w);
|
|
if (!data_) {
|
|
throw std::runtime_error("Failed to initialize ifsh solver.");
|
|
}
|
|
|
|
// Compute inner products, gravity contributions.
|
|
int num_cells = grid.numCells();
|
|
int ngconn = grid_.c_grid()->cell_facepos[num_cells];
|
|
gpress_.clear();
|
|
gpress_.resize(ngconn, 0.0);
|
|
int ngconn2 = data_->sum_ngconn2;
|
|
Binv_.resize(ngconn2);
|
|
ncf_.resize(num_cells);
|
|
typename Grid::Vector grav;
|
|
std::copy(gravity, gravity + Grid::dimension, &grav[0]);
|
|
int count = 0;
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
int num_local_faces = grid.numCellFaces(cell);
|
|
ncf_[cell] = num_local_faces;
|
|
typename Grid::Vector cc = grid.cellCentroid(cell);
|
|
for (int local_ix = 0; local_ix < num_local_faces; ++local_ix) {
|
|
int face = grid.cellFace(cell, local_ix);
|
|
typename Grid::Vector fc = grid.faceCentroid(face);
|
|
gpress_[count++] = grav*(fc - cc);
|
|
}
|
|
}
|
|
assert(count == ngconn);
|
|
|
|
UnstructuredGrid* g = grid_.c_grid();
|
|
mim_ip_simple_all(g->number_of_cells, g->dimensions,
|
|
data_->max_ngconn,
|
|
g->cell_facepos, g->cell_faces,
|
|
g->face_cells, g->face_centroids,
|
|
g->face_normals, g->face_areas,
|
|
g->cell_centroids, g->cell_volumes,
|
|
const_cast<double*>(perm), &Binv_[0]);
|
|
state_ = Initialized;
|
|
}
|
|
|
|
|
|
enum FlowBCTypes { FBC_UNSET, FBC_PRESSURE, FBC_FLUX };
|
|
|
|
/// @brief
|
|
/// Assemble the sparse system.
|
|
/// You must call init() prior to calling assemble().
|
|
/// @param sources Source terms, one per cell. Positive numbers
|
|
/// are sources, negative are sinks.
|
|
/// @param total_mobilities Scalar total mobilities, one per cell.
|
|
/// @param omegas Gravity term, one per cell. In a multi-phase
|
|
/// flow setting this is equal to
|
|
/// \f[ \omega = \sum_{p} \frac{\lambda_p}{\lambda_t} \rho_p \f]
|
|
/// where \f$\lambda_p\f$ is a phase mobility, \f$\rho_p\f$ is a
|
|
/// phase density and \f$\lambda_t\f$ is the total mobility.
|
|
void assemble(const std::vector<double>& sources,
|
|
const std::vector<double>& total_mobilities,
|
|
const std::vector<double>& omegas,
|
|
const std::vector<FlowBCTypes>& bctypes,
|
|
const std::vector<double>& bcvalues)
|
|
{
|
|
if (state_ == Uninitialized) {
|
|
throw std::runtime_error("Error in HybridPressureSolver::assemble(): You must call init() prior to calling assemble().");
|
|
}
|
|
|
|
// Boundary conditions.
|
|
|
|
assert (bctypes.size() ==
|
|
static_cast<std::vector<FlowBCTypes>::size_type>(grid_.numFaces()));
|
|
|
|
FlowBoundaryConditions *bc = gather_boundary_conditions(bctypes, bcvalues);
|
|
|
|
// Source terms from user.
|
|
double* src = const_cast<double*>(&sources[0]); // Ugly? Yes. Safe? I think so.
|
|
|
|
// All well related things are zero.
|
|
well_control_t* wctrl = 0;
|
|
double* WI = 0;
|
|
double* wdp = 0;
|
|
|
|
// Scale inner products and gravity terms by saturation-dependent factors.
|
|
UnstructuredGrid* g = grid_.c_grid();
|
|
Binv_mobilityweighted_.resize(Binv_.size());
|
|
mim_ip_mobility_update(g->number_of_cells, g->cell_facepos, &total_mobilities[0],
|
|
&Binv_[0], &Binv_mobilityweighted_[0]);
|
|
gpress_omegaweighted_.resize(gpress_.size());
|
|
mim_ip_density_update(g->number_of_cells, g->cell_facepos, &omegas[0],
|
|
&gpress_[0], &gpress_omegaweighted_[0]);
|
|
|
|
|
|
// Zero the linalg structures.
|
|
csrmatrix_zero(data_->A);
|
|
for (std::size_t i = 0; i < data_->A->m; i++) {
|
|
data_->b[i] = 0.0;
|
|
}
|
|
|
|
// Assemble the embedded linear system.
|
|
ifsh_assemble(bc, src, &Binv_mobilityweighted_[0], &gpress_omegaweighted_[0],
|
|
wctrl, WI, wdp, data_);
|
|
state_ = Assembled;
|
|
|
|
flow_conditions_destroy(bc);
|
|
}
|
|
|
|
/// Encapsulate a sparse linear system in CSR format.
|
|
struct LinearSystem
|
|
{
|
|
int n;
|
|
int nnz;
|
|
int* ia;
|
|
int* ja;
|
|
double* sa;
|
|
double* b;
|
|
double* x;
|
|
};
|
|
|
|
/// @brief
|
|
/// Access the linear system assembled.
|
|
/// You must call assemble() prior to calling linearSystem().
|
|
/// @param[out] s The linear system encapsulation to modify.
|
|
/// After this call, s will point to linear system structures
|
|
/// that are owned and allocated internally.
|
|
void linearSystem(LinearSystem& s)
|
|
|
|
{
|
|
if (state_ != Assembled) {
|
|
throw std::runtime_error("Error in HybridPressureSolver::linearSystem(): "
|
|
"You must call assemble() prior to calling linearSystem().");
|
|
}
|
|
s.n = data_->A->m;
|
|
s.nnz = data_->A->nnz;
|
|
s.ia = data_->A->ia;
|
|
s.ja = data_->A->ja;
|
|
s.sa = data_->A->sa;
|
|
s.b = data_->b;
|
|
s.x = data_->x;
|
|
}
|
|
|
|
/// @brief
|
|
/// Compute cell pressures and face fluxes.
|
|
/// You must call assemble() (and solve the linear system accessed
|
|
/// by calling linearSystem()) prior to calling
|
|
/// computePressuresAndFluxes().
|
|
/// @param[out] cell_pressures Cell pressure values.
|
|
/// @param[out] face_areas Face flux values.
|
|
void computePressuresAndFluxes(std::vector<double>& cell_pressures,
|
|
std::vector<double>& face_fluxes)
|
|
{
|
|
if (state_ != Assembled) {
|
|
throw std::runtime_error("Error in HybridPressureSolver::computePressuresAndFluxes(): "
|
|
"You must call assemble() (and solve the linear system) "
|
|
"prior to calling computePressuresAndFluxes().");
|
|
}
|
|
int num_cells = grid_.c_grid()->number_of_cells;
|
|
int num_faces = grid_.c_grid()->number_of_faces;
|
|
cell_pressures.clear();
|
|
cell_pressures.resize(num_cells, 0.0);
|
|
face_fluxes.clear();
|
|
face_fluxes.resize(num_faces, 0.0);
|
|
fsh_press_flux(grid_.c_grid(), &Binv_mobilityweighted_[0], &gpress_omegaweighted_[0],
|
|
data_, &cell_pressures[0], &face_fluxes[0], 0, 0);
|
|
}
|
|
|
|
/// @brief
|
|
/// Compute cell fluxes from face fluxes.
|
|
/// You must call assemble() (and solve the linear system accessed
|
|
/// by calling linearSystem()) prior to calling
|
|
/// faceFluxToCellFlux().
|
|
/// @param face_fluxes
|
|
/// @param face_areas Face flux values (usually output from computePressuresAndFluxes()).
|
|
/// @param[out] cell_fluxes Cell-wise flux values.
|
|
/// They are given in cell order, and for each cell there is
|
|
/// one value for each adjacent face (in the same order as the
|
|
/// cell-face topology of the grid). Positive values represent
|
|
/// fluxes out of the cell.
|
|
void faceFluxToCellFlux(const std::vector<double>& face_fluxes,
|
|
std::vector<double>& cell_fluxes)
|
|
{
|
|
if (state_ != Assembled) {
|
|
throw std::runtime_error("Error in HybridPressureSolver::faceFluxToCellFlux(): "
|
|
"You must call assemble() (and solve the linear system) "
|
|
"prior to calling faceFluxToCellFlux().");
|
|
}
|
|
const UnstructuredGrid& g = *(grid_.c_grid());
|
|
int num_cells = g.number_of_cells;
|
|
cell_fluxes.resize(g.cell_facepos[num_cells]);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
for (int hface = g.cell_facepos[cell]; hface < g.cell_facepos[cell + 1]; ++hface) {
|
|
int face = g.cell_faces[hface];
|
|
bool pos = (g.face_cells[2*face] == cell);
|
|
cell_fluxes[hface] = pos ? face_fluxes[face] : -face_fluxes[face];
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @brief
|
|
/// Access the number of connections (faces) per cell. Deprecated, will be removed.
|
|
const std::vector<int>& numCellFaces()
|
|
{
|
|
return ncf_;
|
|
}
|
|
|
|
private:
|
|
// Disabling copy and assigment for now.
|
|
HybridPressureSolver(const HybridPressureSolver&);
|
|
HybridPressureSolver& operator=(const HybridPressureSolver&);
|
|
|
|
enum State { Uninitialized, Initialized, Assembled };
|
|
State state_;
|
|
|
|
// Solver data.
|
|
fsh_data* data_;
|
|
// Grid.
|
|
GridAdapter grid_;
|
|
// Number of faces per cell.
|
|
std::vector<int> ncf_;
|
|
// B^{-1} storage.
|
|
std::vector<double> Binv_;
|
|
std::vector<double> Binv_mobilityweighted_;
|
|
// Gravity contributions.
|
|
std::vector<double> gpress_;
|
|
std::vector<double> gpress_omegaweighted_;
|
|
|
|
|
|
FlowBoundaryConditions*
|
|
gather_boundary_conditions(const std::vector<FlowBCTypes>& bctypes ,
|
|
const std::vector<double>& bcvalues)
|
|
{
|
|
FlowBoundaryConditions* fbc = flow_conditions_construct(0);
|
|
|
|
int ok = fbc != 0;
|
|
std::vector<FlowBCTypes>::size_type i;
|
|
|
|
for (i = 0; ok && (i < bctypes.size()); ++i) {
|
|
if (bctypes[ i ] == FBC_PRESSURE) {
|
|
ok = flow_conditions_append(BC_PRESSURE,
|
|
static_cast<int>(i),
|
|
bcvalues[ i ],
|
|
fbc);
|
|
}
|
|
else if (bctypes[ i ] == FBC_FLUX) {
|
|
ok = flow_conditions_append(BC_FLUX_TOTVOL,
|
|
static_cast<int>(i),
|
|
bcvalues[ i ],
|
|
fbc);
|
|
}
|
|
}
|
|
|
|
return fbc;
|
|
}
|
|
|
|
|
|
}; // class HybridPressureSolver
|
|
|
|
|
|
#endif // OPM_HYBRIDPRESSURESOLVER_HEADER_INCLUDED
|