opm-core/tests/test_cfs_tpfa.c

701 lines
18 KiB
C

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <suitesparse/umfpack.h>
#include <opmcore/grid.h>
#include <opmcore/well.h>
#include <opmcore/linalg/sparse_sys.h>
#include <opmcore/pressure/flow_bc.h>
#include <opmcore/pressure/tpfa/cfs_tpfa.h>
#include <opmcore/pressure/tpfa/compr_quant.h>
#include <opmcore/pressure/tpfa/trans_tpfa.h>
struct CSCMatrix {
UF_long n;
UF_long nnz;
UF_long *p;
UF_long *i;
double *x;
};
/* ---------------------------------------------------------------------- */
static void
csc_deallocate(struct CSCMatrix *csc)
/* ---------------------------------------------------------------------- */
{
if (csc != NULL) {
if (csc->x != NULL) { free(csc->x); }
if (csc->i != NULL) { free(csc->i); }
if (csc->p != NULL) { free(csc->p); }
free(csc);
}
}
/* ---------------------------------------------------------------------- */
static struct CSCMatrix *
csc_allocate(UF_long n, UF_long nnz)
/* ---------------------------------------------------------------------- */
{
struct CSCMatrix *new;
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->p = malloc((n + 1) * sizeof *new->p);
new->i = malloc(nnz * sizeof *new->i);
new->x = malloc(nnz * sizeof *new->x);
if ((new->p == NULL) || (new->i == NULL) || (new->x == NULL)) {
csc_deallocate(new);
new = NULL;
} else {
new->n = n;
new->nnz = nnz;
}
}
return new;
}
/* ---------------------------------------------------------------------- */
static void
csr_to_csc(const int *ia,
const int *ja,
const double *sa,
struct CSCMatrix *csc)
/* ---------------------------------------------------------------------- */
{
UF_long i, nz;
/* Clear garbage, prepare for counting */
for (i = 0; i <= csc->n; i++) { csc->p[i] = 0; }
/* Count column connections */
for (nz = 0; nz < csc->nnz; nz++) {
csc->p[ ja[nz] + 1 ] += 1;
}
/* Define column start pointers */
for (i = 1; i <= csc->n; i++) {
csc->p[0] += csc->p[i];
csc->p[i] = csc->p[0] - csc->p[i];
}
assert (csc->p[0] == csc->nnz);
/* Fill matrix whilst defining column end pointers */
for (i = nz = 0; i < csc->n; i++) {
for (; nz < ia[i + 1]; nz++) {
csc->i[ csc->p[ ja[nz] + 1 ] ] = i; /* Insertion sort */
csc->x[ csc->p[ ja[nz] + 1 ] ] = sa[nz]; /* Insert mat elem */
csc->p [ ja[nz] + 1 ] += 1; /* Advance col ptr */
}
}
assert (csc->p[csc->n] == csc->nnz);
csc->p[0] = 0;
}
/* ---------------------------------------------------------------------- */
static void
solve_umfpack(struct CSCMatrix *csc, const double *b, double *x)
/* ---------------------------------------------------------------------- */
{
void *Symbolic, *Numeric;
double Info[UMFPACK_INFO], Control[UMFPACK_CONTROL];
umfpack_dl_defaults(Control);
umfpack_dl_symbolic(csc->n, csc->n, csc->p, csc->i, csc->x,
&Symbolic, Control, Info);
umfpack_dl_numeric (csc->p, csc->i, csc->x,
Symbolic, &Numeric, Control, Info);
umfpack_dl_free_symbolic(&Symbolic);
umfpack_dl_solve(UMFPACK_A, csc->p, csc->i, csc->x, x, b,
Numeric, Control, Info);
umfpack_dl_free_numeric(&Numeric);
}
/*---------------------------------------------------------------------------*/
static void
call_UMFPACK(struct CSRMatrix *A, double *b, double *x)
/*---------------------------------------------------------------------------*/
{
struct CSCMatrix *csc;
csc = csc_allocate(A->m, A->ia[A->m]);
if (csc != NULL) {
csr_to_csc(A->ia, A->ja, A->sa, csc);
solve_umfpack(csc, b, x);
}
csc_deallocate(csc);
}
static void
deallocate_cart_grid(grid_t *G)
{
if (G != NULL) {
free(G->node_coordinates);
free(G->face_nodes);
free(G->face_nodepos);
free(G->face_cells);
free(G->face_centroids);
free(G->face_normals);
free(G->face_areas);
free(G->cell_faces);
free(G->cell_facepos);
free(G->cell_centroids);
free(G->cell_volumes);
}
free(G);
}
static grid_t *
cart_grid(int nx, int ny, int nz)
{
/* The following applies to any grid derived from base_grid_t. */
int *cfaces, *cfacepos;
double *ccentroids, *cvolumes;
int *fnodes, *fnodepos, *fcells;
double *fnormals, *fcentroids, *fareas;
double *coord;
int i,j,k;
int Nx = nx+1;
int Ny = ny+1;
int Nz = nz+1;
int nxf = Nx*ny*nz;
int nyf = nx*Ny*nz;
int nzf = nx*ny*Nz;
grid_t *G = malloc(1 * sizeof *G);
G->dimensions = 3;
G->number_of_cells = nx*ny*nz;
G->number_of_faces = nxf+nyf+nzf;
G->number_of_nodes = Nx*Ny*Nz;
G->node_coordinates = malloc(G->number_of_nodes * 3 * sizeof *(G->node_coordinates));
G->face_nodes = malloc(G->number_of_faces * 4 * sizeof *(G->face_nodes));
G->face_nodepos = malloc((G->number_of_faces+1) * sizeof *(G->face_nodepos));
G->face_cells = malloc(G->number_of_faces * 2 * sizeof *(G->face_cells));
G->face_centroids = malloc(G->number_of_faces * 3 * sizeof *(G->face_centroids));
G->face_normals = malloc(G->number_of_faces * 3 * sizeof *(G->face_normals));
G->face_areas = malloc(G->number_of_faces * 1 * sizeof *(G->face_areas));
G->cell_faces = malloc(G->number_of_cells * 6 * sizeof *(G->cell_faces));
G->cell_facepos = malloc((G->number_of_cells+1) * sizeof *(G->cell_facepos));
G->cell_centroids = malloc(G->number_of_cells * 3 * sizeof *(G->cell_centroids));
G->cell_volumes = malloc(G->number_of_cells * 1 * sizeof *(G->cell_volumes));
cfaces = G->cell_faces;
cfacepos = G->cell_facepos;
ccentroids = G->cell_centroids;
cvolumes = G->cell_volumes;
for (k=0; k<nz; ++k) {
for (j=0; j<ny; ++j) {
for (i=0; i<nx; ++i) {
*cfaces++ = i+ Nx*(j+ ny* k );
*cfaces++ = i+1+Nx*(j+ ny* k );
*cfaces++ = i+ nx*(j+ Ny* k ) +nxf;
*cfaces++ = i+ nx*(j+1+Ny* k ) +nxf;
*cfaces++ = i+ nx*(j+ ny* k ) +nxf+nyf;
*cfaces++ = i+ nx*(j+ ny*(k+1)) +nxf+nyf;
cfacepos[1] = cfacepos[0]+6;
++cfacepos;
*ccentroids++ = i+0.5;
*ccentroids++ = j+0.5;
*ccentroids++ = k+0.5;
*cvolumes++ = 1;
}
}
}
fnodes = G->face_nodes;
fnodepos = G->face_nodepos;
fcells = G->face_cells;
fnormals = G->face_normals;
fcentroids = G->face_centroids;
fareas = G->face_areas;
/* Faces with x-normal */
for (k=0; k<nz; ++k) {
for (j=0; j<ny; ++j) {
for (i=0; i<nx+1; ++i) {
*fnodes++ = i+Nx*(j + Ny * k );
*fnodes++ = i+Nx*(j+1 + Ny * k );
*fnodes++ = i+Nx*(j+1 + Ny *(k+1));
*fnodes++ = i+Nx*(j + Ny *(k+1));
fnodepos[1] = fnodepos[0] + 4;
++fnodepos;
if (i==0) {
*fcells++ = -1;
*fcells++ = i+nx*(j+ny*k);
}
else if (i == nx) {
*fcells++ = i-1+nx*(j+ny*k);
*fcells++ = -1;
}
else {
*fcells++ = i-1 + nx*(j+ny*k);
*fcells++ = i + nx*(j+ny*k);
}
*fnormals++ = 1;
*fnormals++ = 0;
*fnormals++ = 0;
*fcentroids++ = i;
*fcentroids++ = j+0.5;
*fcentroids++ = k+0.5;
*fareas++ = 1;
}
}
}
/* Faces with y-normal */
for (k=0; k<nz; ++k) {
for (j=0; j<ny+1; ++j) {
for (i=0; i<nx; ++i) {
*fnodes++ = i+ Nx*(j + Ny * k );
*fnodes++ = i + Nx*(j + Ny *(k+1));
*fnodes++ = i+1 + Nx*(j + Ny *(k+1));
*fnodes++ = i+1 + Nx*(j + Ny * k );
fnodepos[1] = fnodepos[0] + 4;
++fnodepos;
if (j==0) {
*fcells++ = -1;
*fcells++ = i+nx*(j+ny*k);
}
else if (j == ny) {
*fcells++ = i+nx*(j-1+ny*k);
*fcells++ = -1;
}
else {
*fcells++ = i+nx*(j-1+ny*k);
*fcells++ = i+nx*(j+ny*k);
}
*fnormals++ = 0;
*fnormals++ = 1;
*fnormals++ = 0;
*fcentroids++ = i+0.5;
*fcentroids++ = j;
*fcentroids++ = k+0.5;
*fareas++ = 1;
}
}
}
/* Faces with z-normal */
for (k=0; k<nz+1; ++k) {
for (j=0; j<ny; ++j) {
for (i=0; i<nx; ++i) {
*fnodes++ = i+ Nx*(j + Ny * k);
*fnodes++ = i+1 + Nx*(j + Ny * k);
*fnodes++ = i+1 + Nx*(j+1 + Ny * k);
*fnodes++ = i+ Nx*(j+1 + Ny * k);
fnodepos[1] = fnodepos[0] + 4;
++fnodepos;
if (k==0) {
*fcells++ = -1;
*fcells++ = i+nx*(j+ny*k);
}
else if (k == nz) {
*fcells++ = i+nx*(j+ny*(k-1));
*fcells++ = -1;
}
else {
*fcells++ = i+nx*(j+ny*(k-1));
*fcells++ = i+nx*(j+ny*k);
}
*fnormals++ = 0;
*fnormals++ = 0;
*fnormals++ = 1;
*fcentroids++ = i+0.5;
*fcentroids++ = j+0.5;
*fcentroids++ = k;
*fareas++ = 1;
}
}
}
coord = G->node_coordinates;
for (k=0; k<nz+1; ++k) {
for (j=0; j<ny+1; ++j) {
for (i=0; i<nx+1; ++i) {
*coord++ = i;
*coord++ = j;
*coord++ = k;
}
}
}
return G;
}
static void
deallocate_cq(struct compr_quantities *cq)
{
if (cq != NULL) {
free(cq->phasemobf);
free(cq->Af);
free(cq->Ac);
free(cq->voldiscr);
free(cq->totcompr);
}
free(cq);
}
static struct compr_quantities *
allocate_cq(size_t nc, size_t nf, int np)
{
struct compr_quantities *new;
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->totcompr = malloc(nc * sizeof *new->totcompr );
new->voldiscr = malloc(nc * sizeof *new->voldiscr );
new->Ac = malloc(nc * np * np * sizeof *new->Ac );
new->Af = malloc(nf * np * np * sizeof *new->Af );
new->phasemobf = malloc(nf * np * sizeof *new->phasemobf);
if ((new->totcompr == NULL) || (new->voldiscr == NULL) ||
(new->Ac == NULL) || (new->Af == NULL) ||
(new->phasemobf == NULL)) {
deallocate_cq(new);
new = NULL;
} else {
new->nphases = np;
}
}
return new;
}
static void
vector_assign(size_t n, double value, double *v)
{
size_t i;
for (i = 0; i < n; i++) {
v[i] = value;
}
}
static void
vector_ones(size_t n, double *v)
{
vector_assign(n, 1.0, v);
}
static void
set_incompressible(size_t nc, size_t nf, struct compr_quantities *cq)
{
size_t i, j, np;
np = cq->nphases;
vector_zero(nc , cq->totcompr );
vector_zero(nc , cq->voldiscr );
vector_zero(nc * np * np, cq->Ac);
vector_zero(nf * np * np, cq->Af);
vector_ones(nf * np , cq->phasemobf);
for (i = 0; i < nc; i++) {
for (j = 0; j < np; j++) {
cq->Ac[i*np*np + j*(np + 1)] = 1.0;
}
}
for (i = 0; i < nf; i++) {
for (j = 0; j < np; j++) {
cq->Af[i*np*np + j*(np + 1)] = 1.0;
}
}
}
static void
set_homoperm(size_t nc, size_t dim, double *perm)
{
size_t i, j;
vector_zero(nc * dim * dim, perm);
for (i = 0; i < nc; i++) {
for (j = 0; j < dim; j++) {
perm[i*dim*dim + j*(dim + 1)] = 1.0;
}
}
}
static void
destroy_wells(well_t *W)
{
if (W != NULL) {
free(W->well_cells);
free(W->well_connpos);
}
free(W);
}
static well_t *
create_wells(grid_t *G)
{
well_t *new = malloc(1 * sizeof *new);
if (new != NULL) {
new->well_connpos = malloc((2 + 1) * sizeof *new->well_connpos);
new->well_cells = malloc(2 * sizeof *new->well_cells );
if ((new->well_connpos == NULL) ||
(new->well_cells == NULL)) {
destroy_wells(new);
new = NULL;
} else {
new->number_of_wells = 2;
new->well_connpos[0] = 0;
new->well_connpos[1] = 1;
new->well_connpos[2] = 2;
new->well_cells[0] = 0;
new->well_cells[1] = G->number_of_cells - 1;
}
}
return new;
}
static void
destroy_well_control(well_control_t *ctrl)
{
if (ctrl != NULL) {
free(ctrl->target);
free(ctrl->ctrl);
free(ctrl->type);
}
free(ctrl);
}
static well_control_t *
create_well_control(void)
{
well_control_t *new;
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->type = malloc(2 * sizeof *new->type );
new->ctrl = malloc(2 * sizeof *new->ctrl );
new->target = malloc(2 * sizeof *new->target);
if ((new->type == NULL) || (new->ctrl == NULL) ||
(new->target == NULL)) {
destroy_well_control(new);
new = NULL;
} else {
new->type[0] = INJECTOR; new->type[1] = PRODUCER;
new->ctrl[0] = new->ctrl[1] = BHP;
new->target[0] = 2;
new->target[1] = 1;
}
}
return new;
}
static void
destroy_completion_data(struct completion_data *cd)
{
if (cd != NULL) {
free(cd->WI);
free(cd->gpot);
free(cd->A);
free(cd->phasemob);
}
free(cd);
}
static struct completion_data *
create_completion_data(well_t *W, int np)
{
size_t i, j, totconn;
struct completion_data *new;
totconn = W->well_connpos[ W->number_of_wells ];
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->WI = malloc(totconn * sizeof *new->WI);
new->gpot = malloc(totconn * np * sizeof *new->gpot);
new->A = malloc(totconn * np * np * sizeof *new->A);
new->phasemob = malloc(totconn * np * sizeof *new->phasemob);
if ((new->WI == NULL) ||
(new->gpot == NULL) ||
(new->A == NULL) ||
(new->phasemob == NULL)) {
destroy_completion_data(new);
new = NULL;
} else {
vector_ones(totconn , new->WI);
vector_zero(totconn * np , new->gpot);
vector_zero(totconn * np * np, new->A);
vector_ones(totconn * np , new->phasemob);
for (i = 0; i < totconn; i++) {
for (j = 0; j < (size_t)np; j++) {
new->A[i*np*np + j*(np + 1)] = 1.0;
}
}
}
}
return new;
}
int
main(void)
{
int i, nphases, dim;
flowbc_t *bc;
double dt;
double *htrans, *trans, *perm, *totmob, *src;
double *gravcap_f, *porevol, *cpress0;
double *cpress, *fpress, *fflux, *wpress, *wflux;
grid_t *G;
well_t *W;
well_control_t *wctrl;
struct completion_data *wdata;
struct compr_quantities *cq;
struct cfs_tpfa_data *h;
nphases = 2;
G = cart_grid(5, 5, 1);
W = create_wells(G);
wctrl = create_well_control();
wdata = create_completion_data(W, nphases);
dim = G->dimensions;
htrans = malloc(G->cell_facepos[ G->number_of_cells ] * sizeof *htrans);
trans = malloc(G->number_of_faces * sizeof *trans );
perm = malloc(dim * dim * G->number_of_cells * sizeof *perm );
totmob = malloc(G->number_of_cells * sizeof *totmob);
src = malloc(G->number_of_cells * sizeof *src );
gravcap_f = malloc(G->number_of_faces * nphases * sizeof *gravcap_f);
porevol = malloc(G->number_of_cells * sizeof *porevol );
cpress0 = malloc(G->number_of_cells * sizeof *cpress0 );
cpress = malloc(G->number_of_cells * sizeof *cpress );
fpress = malloc(G->number_of_faces * sizeof *fpress );
fflux = malloc(G->number_of_faces * sizeof *fflux );
wpress = malloc(W->number_of_wells * sizeof *wpress);
wflux = malloc(W->well_connpos[ W->number_of_wells ] * sizeof *wflux);
bc = allocate_flowbc(G->number_of_faces);
set_homoperm(G->number_of_cells, G->dimensions, perm);
cq = allocate_cq(G->number_of_cells, G->number_of_faces, nphases);
set_incompressible(G->number_of_cells, G->number_of_faces, cq);
h = cfs_tpfa_construct(G, W, nphases);
vector_assign(G->number_of_cells, nphases, totmob);
tpfa_htrans_compute(G, perm, htrans);
tpfa_eff_trans_compute(G, totmob, htrans, trans);
vector_zero(G->number_of_cells, src);
dt = 1;
cfs_tpfa_assemble(G, dt, W, bc, src, cq, trans, gravcap_f, wctrl, wdata,
cpress0, porevol,
h);
call_UMFPACK(h->A, h->b, h->x);
cfs_tpfa_press_flux(G, bc, W, nphases, trans, cq->phasemobf, gravcap_f,
wdata, h, cpress, fflux, wpress, wflux);
cfs_tpfa_fpress(G, bc, nphases, htrans, cq->phasemobf, gravcap_f, h,
cpress, fflux, fpress);
for (i = 0; i < G->number_of_cells; i++) {
fprintf(stderr, "press(%02d) = %g;\n", i + 1, cpress[i]);
}
cfs_tpfa_destroy(h);
deallocate_cq(cq);
deallocate_flowbc(bc);
free(wflux); free(wpress);
free(fflux); free(fpress); free(cpress);
free(cpress0); free(porevol); free(gravcap_f);
free(src); free(totmob); free(perm); free(trans); free(htrans);
deallocate_cart_grid(G);
return 0;
}