opm-core/opm/core/pressure/CompressibleTpfa.cpp
2012-05-21 13:13:13 +02:00

559 lines
22 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/pressure/CompressibleTpfa.hpp>
#include <opm/core/pressure/tpfa/cfs_tpfa_residual.h>
#include <opm/core/pressure/tpfa/compr_quant_general.h>
#include <opm/core/pressure/tpfa/compr_source.h>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/sparse_sys.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/newwells.h>
#include <opm/core/BlackoilState.hpp>
#include <opm/core/WellState.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
namespace Opm
{
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] linsolver Linear solver to use.
/// \param[in] gravity Gravity vector. If nonzero, the array should
/// have D elements.
/// \param[in] wells The wells argument. Will be used in solution,
/// is ignored if NULL.
/// Note: this class observes the well object, and
/// makes the assumption that the well topology
/// and completions does not change during the
/// run. However, controls (only) are allowed
/// to change.
CompressibleTpfa::CompressibleTpfa(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const LinearSolverInterface& linsolver,
const double residual_tol,
const double change_tol,
const int maxiter,
const double* gravity,
const struct Wells* wells)
: grid_(grid),
props_(props),
linsolver_(linsolver),
residual_tol_(residual_tol),
change_tol_(change_tol),
maxiter_(maxiter),
gravity_(gravity),
wells_(wells),
htrans_(grid.cell_facepos[ grid.number_of_cells ]),
trans_ (grid.number_of_faces),
porevol_(grid.number_of_cells),
allcells_(grid.number_of_cells)
{
if (wells_ && (wells_->number_of_phases != props.numPhases())) {
THROW("Inconsistent number of phases specified (wells vs. props): "
<< wells_->number_of_phases << " != " << props.numPhases());
}
const int num_dofs = grid.number_of_cells + (wells ? wells->number_of_wells : 0);
pressure_increment_.resize(num_dofs);
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
tpfa_trans_compute(gg, &htrans_[0], &trans_[0]);
computePorevolume(grid_, props.porosity(), porevol_);
for (int c = 0; c < grid.number_of_cells; ++c) {
allcells_[c] = c;
}
cfs_tpfa_res_wells w;
w.W = const_cast<struct Wells*>(wells_);
w.data = NULL;
h_ = cfs_tpfa_res_construct(gg, &w, props.numPhases());
}
/// Destructor.
CompressibleTpfa::~CompressibleTpfa()
{
cfs_tpfa_res_destroy(h_);
}
/// Solve pressure equation, by Newton iterations.
void CompressibleTpfa::solve(const double dt,
BlackoilState& state,
WellState& well_state)
{
const int nc = grid_.number_of_cells;
// Set up dynamic data.
computePerSolveDynamicData(dt, state, well_state);
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
double inc_norm = 0.0;
int iter = 0;
double res_norm = residualNorm();
const int width = 18;
std::cout << "\nIteration Residual Change"
<< std::setw(width) << iter
<< std::setw(width) << res_norm << std::endl;
for (; (iter < maxiter_) && (res_norm > residual_tol_); ++iter) {
// Solve for increment in Newton method:
// incr = x_{n+1} - x_{n} = -J^{-1}F
// (J is Jacobian matrix, F is residual)
solveIncrement();
// Update pressure vars with increment.
std::copy(pressure_increment_.begin(), pressure_increment_.begin() + nc, state.pressure().begin());
std::copy(pressure_increment_.begin() + nc, pressure_increment_.end(), well_state.bhp().begin());
// Stop iterating if increment is small.
inc_norm = incrementNorm();
if (inc_norm <= change_tol_) {
break;
}
// Set up dynamic data.
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
// Update residual norm.
res_norm = residualNorm();
std::cout << "\nIteration Residual Change"
<< std::setw(width) << iter + 1
<< std::setw(width) << res_norm
<< std::setw(width) << inc_norm << std::endl;
}
if ((iter == maxiter_) && (res_norm > residual_tol_) && (inc_norm > change_tol_)) {
THROW("CompressibleTpfa::solve() failed to converge in " << maxiter_ << " iterations.");
}
std::cout << "Solved pressure in " << iter << " iterations." << std::endl;
// Compute fluxes and face pressures.
computeResults(state, well_state);
}
/// Compute well potentials.
void CompressibleTpfa::computeWellPotentials(const BlackoilState& state)
{
if (wells_ == NULL) return;
const int nw = wells_->number_of_wells;
const int np = props_.numPhases();
const int nperf = wells_->well_connpos[nw];
const int dim = grid_.dimensions;
const double grav = gravity_ ? gravity_[dim - 1] : 0.0;
wellperf_gpot_.clear();
wellperf_gpot_.resize(np*nperf, 0.0);
if (grav == 0.0) {
return;
}
// Temporary storage for perforation A matrices and densities.
std::vector<double> A(np*np, 0.0);
std::vector<double> rho(np, 0.0);
// Main loop, iterate over all perforations,
// using the following formula (by phase):
// gpot(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the phase densities rho(perf) are taken to be
// the densities in the perforation cell.
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells_->depth_ref[w];
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w + 1]; ++j) {
const int cell = wells_->well_cells[j];
const double cell_depth = grid_.cell_centroids[dim * cell + dim - 1];
props_.matrix(1, &state.pressure()[cell], &state.surfacevol()[np*cell], &cell, &A[0], 0);
props_.density(1, &A[0], &rho[0]);
for (int phase = 0; phase < np; ++phase) {
wellperf_gpot_[np*j + phase] = rho[phase]*grav*(cell_depth - ref_depth);
}
}
}
}
/// Compute per-solve dynamic properties.
void CompressibleTpfa::computePerSolveDynamicData(const double /*dt*/,
const BlackoilState& state,
const WellState& /*well_state*/)
{
computeWellPotentials(state);
}
/// Compute per-iteration dynamic properties.
void CompressibleTpfa::computePerIterationDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
// These are the variables that get computed by this function:
//
// std::vector<double> cell_A_;
// std::vector<double> cell_dA_;
// std::vector<double> cell_viscosity_;
// std::vector<double> cell_phasemob_;
// std::vector<double> cell_voldisc_;
// std::vector<double> face_A_;
// std::vector<double> face_phasemob_;
// std::vector<double> face_gravcap_;
// std::vector<double> wellperf_A_;
// std::vector<double> wellperf_phasemob_;
computeCellDynamicData(dt, state, well_state);
computeFaceDynamicData(dt, state, well_state);
computeWellDynamicData(dt, state, well_state);
}
/// Compute per-iteration dynamic properties for cells.
void CompressibleTpfa::computeCellDynamicData(const double /*dt*/,
const BlackoilState& state,
const WellState& /*well_state*/)
{
// These are the variables that get computed by this function:
//
// std::vector<double> cell_A_;
// std::vector<double> cell_dA_;
// std::vector<double> cell_viscosity_;
// std::vector<double> cell_phasemob_;
// std::vector<double> cell_voldisc_;
const int nc = grid_.number_of_cells;
const int np = props_.numPhases();
const double* cell_p = &state.pressure()[0];
const double* cell_z = &state.surfacevol()[0];
const double* cell_s = &state.saturation()[0];
cell_A_.resize(nc*np*np);
cell_dA_.resize(nc*np*np);
props_.matrix(nc, cell_p, cell_z, &allcells_[0], &cell_A_[0], &cell_dA_[0]);
cell_viscosity_.resize(nc*np);
props_.viscosity(nc, cell_p, cell_z, &allcells_[0], &cell_viscosity_[0], 0);
cell_phasemob_.resize(nc*np);
props_.relperm(nc, cell_s, &allcells_[0], &cell_phasemob_[0], 0);
std::transform(cell_phasemob_.begin(), cell_phasemob_.end(),
cell_viscosity_.begin(),
cell_phasemob_.begin(),
std::divides<double>());
// Volume discrepancy: we have that
// z = Au, voldiscr = sum(u) - 1,
// but I am not sure it is actually needed.
// Use zero for now.
// TODO: Check this!
cell_voldisc_.clear();
cell_voldisc_.resize(nc, 0.0);
}
/// Compute per-iteration dynamic properties for faces.
void CompressibleTpfa::computeFaceDynamicData(const double /*dt*/,
const BlackoilState& state,
const WellState& /*well_state*/)
{
// These are the variables that get computed by this function:
//
// std::vector<double> face_A_;
// std::vector<double> face_phasemob_;
// std::vector<double> face_gravcap_;
const int np = props_.numPhases();
const int nf = grid_.number_of_faces;
const int dim = grid_.dimensions;
const double grav = gravity_ ? gravity_[dim - 1] : 0.0;
std::vector<double> gravcontrib[2];
std::vector<double> pot[2];
gravcontrib[0].resize(np);
gravcontrib[1].resize(np);
pot[0].resize(np);
pot[1].resize(np);
face_A_.resize(nf*np*np);
face_phasemob_.resize(nf*np);
face_gravcap_.resize(nf*np);
for (int face = 0; face < nf; ++face) {
// Obtain properties from both sides of the face.
const double face_depth = grid_.face_centroids[face*dim + dim - 1];
const int* c = &grid_.face_cells[2*face];
// Get pressures and compute gravity contributions,
// to decide upwind directions.
double c_press[2];
for (int j = 0; j < 2; ++j) {
if (c[j] >= 0) {
// Pressure
c_press[j] = state.pressure()[c[j]];
// Gravity contribution, gravcontrib = rho*(face_z - cell_z) [per phase].
if (grav != 0.0) {
const double depth_diff = face_depth - grid_.cell_centroids[c[j]*dim + dim - 1];
props_.density(1, &cell_A_[np*np*c[j]], &gravcontrib[j][0]);
for (int p = 0; p < np; ++p) {
gravcontrib[j][p] *= depth_diff;
}
} else {
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
}
} else {
// Pressures
c_press[j] = state.facepressure()[face];
// Gravity contribution.
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
}
}
// Gravity contribution:
// gravcapf = rho_1*g*(z_12 - z_1) - rho_2*g*(z_12 - z_2)
// where _1 and _2 refers to two neigbour cells, z is the
// z coordinate of the centroid, and z_12 is the face centroid.
// Also compute the potentials.
for (int phase = 0; phase < np; ++phase) {
face_gravcap_[np*face + phase] = gravcontrib[0][phase] - gravcontrib[1][phase];
pot[0][phase] = c_press[0] + face_gravcap_[np*face + phase];
pot[1][phase] = c_press[1];
}
// Now we can easily find the upwind direction for every phase,
// we can also tell which boundary faces are inflow bdys.
// Get upwind mobilities by phase.
// Get upwind A matrix rows by phase.
// NOTE:
// We should be careful to upwind the R factors,
// the B factors are not that vital.
// z = Au = RB^{-1}u,
// where (this example is for gas-oil)
// R = [1 RgL; RoV 1], B = [BL 0 ; 0 BV]
// (RgL is gas in Liquid phase, RoV is oil in Vapour phase.)
// A = [1/BL RgL/BV; RoV/BL 1/BV]
// This presents us with a dilemma, as V factors should be
// upwinded according to V phase flow, same for L. What then
// about the RgL/BV and RoV/BL numbers?
// We give priority to R, and therefore upwind the rows of A
// by phase (but remember, Fortran matrix ordering).
// This prompts the question if we should split the matrix()
// property method into formation volume and R-factor methods.
for (int phase = 0; phase < np; ++phase) {
int upwindc = -1;
if (c[0] >=0 && c[1] >= 0) {
upwindc = (pot[0] < pot[1]) ? c[1] : c[0];
} else {
upwindc = (c[0] >= 0) ? c[0] : c[1];
}
face_phasemob_[np*face + phase] = cell_phasemob_[np*upwindc + phase];
for (int p2 = 0; p2 < np; ++p2) {
// Recall: column-major ordering.
face_A_[np*np*face + phase + np*p2]
= cell_A_[np*np*upwindc + phase + np*p2];
}
}
}
}
/// Compute per-iteration dynamic properties for faces.
void CompressibleTpfa::computeWellDynamicData(const double /*dt*/,
const BlackoilState& /*state*/,
const WellState& /*well_state*/)
{
// These are the variables that get computed by this function:
//
// std::vector<double> wellperf_A_;
// std::vector<double> wellperf_phasemob_;
const int np = props_.numPhases();
const int nw = wells_->number_of_wells;
const int nperf = wells_->well_connpos[nw];
wellperf_A_.resize(nperf*np*np);
wellperf_phasemob_.resize(nperf*np);
// The A matrix is set equal to the perforation grid cells'
// matrix, for both injectors and producers.
// The mobilities are all set equal to the total mobility for the
// cell for injectors, and equal to individual phase mobilities
// for producers.
for (int w = 0; w < nw; ++w) {
bool is_injector = wells_->type[w] == INJECTOR;
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w+1]; ++j) {
const int c = wells_->well_cells[j];
const double* cA = &cell_A_[np*np*c];
double* wpA = &wellperf_A_[np*np*j];
std::copy(cA, cA + np*np, wpA);
const double* cM = &cell_phasemob_[np*c];
double* wpM = &wellperf_phasemob_[np*j];
if (is_injector) {
double totmob = 0.0;
for (int phase = 0; phase < np; ++phase) {
totmob += cM[phase];
}
std::fill(wpM, wpM + np, totmob);
} else {
std::copy(cM, cM + np, wpM);
}
}
}
}
/// Compute the residual and Jacobian.
void CompressibleTpfa::assemble(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
const double* cell_press = &state.pressure()[0];
const double* well_bhp = well_state.bhp().empty() ? NULL : &well_state.bhp()[0];
const double* z = &state.surfacevol()[0];
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
CompletionData completion_data;
completion_data.gpot = &wellperf_gpot_[0];
completion_data.A = &wellperf_A_[0];
completion_data.phasemob = &wellperf_phasemob_[0];
cfs_tpfa_res_wells wells_tmp;
wells_tmp.W = const_cast<Wells*>(wells_);
wells_tmp.data = &completion_data;
cfs_tpfa_res_forces forces;
forces.wells = &wells_tmp;
forces.src = NULL; // Check if it is legal to leave it as NULL.
compr_quantities_gen cq;
cq.Ac = &cell_A_[0];
cq.dAc = &cell_dA_[0];
cq.Af = &face_A_[0];
cq.phasemobf = &face_phasemob_[0];
cq.voldiscr = &cell_voldisc_[0];
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], h_);
}
/// Computes pressure_increment_.
void CompressibleTpfa::solveIncrement()
{
// Increment is equal to -J^{-1}F
linsolver_.solve(h_->J, h_->F, &pressure_increment_[0]);
std::transform(pressure_increment_.begin(), pressure_increment_.end(),
pressure_increment_.begin(), std::negate<double>());
}
namespace {
template <class FI>
double infnorm(FI beg, FI end)
{
double norm = 0.0;
for (; beg != end; ++beg) {
norm = std::max(norm, std::fabs(*beg));
}
return norm;
}
} // anonymous namespace
/// Computes the inf-norm of the residual.
double CompressibleTpfa::residualNorm() const
{
const int ndof = pressure_increment_.size();
return infnorm(h_->F, h_->F + ndof);
}
/// Computes the inf-norm of pressure_increment_.
double CompressibleTpfa::incrementNorm() const
{
return infnorm(pressure_increment_.begin(), pressure_increment_.end());
}
/// Compute the output.
void CompressibleTpfa::computeResults(BlackoilState& state,
WellState& well_state) const
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
CompletionData completion_data;
completion_data.gpot = const_cast<double*>(&wellperf_gpot_[0]);
completion_data.A = const_cast<double*>(&wellperf_A_[0]);
completion_data.phasemob = const_cast<double*>(&wellperf_phasemob_[0]);
cfs_tpfa_res_wells wells_tmp;
wells_tmp.W = const_cast<Wells*>(wells_);
wells_tmp.data = &completion_data;
cfs_tpfa_res_forces forces;
forces.wells = &wells_tmp;
forces.src = NULL;
cfs_tpfa_res_flux(gg,
&forces,
props_.numPhases(),
&trans_[0],
&cell_phasemob_[0],
&face_phasemob_[0],
&face_gravcap_[0],
&state.pressure()[0],
&well_state.bhp()[0],
&state.faceflux()[0],
&well_state.perfRates()[0]);
cfs_tpfa_res_fpress(gg,
props_.numPhases(),
&htrans_[0],
&face_phasemob_[0],
&face_gravcap_[0],
h_,
&state.pressure()[0],
&state.faceflux()[0],
&state.facepressure()[0]);
}
} // namespace Opm