opm-core/opm/core/io/vtk/writeVtkData.cpp
2013-07-28 08:34:13 -03:00

320 lines
11 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/io/vtk/writeVtkData.hpp>
#include <opm/core/utility/DataMap.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <boost/lexical_cast.hpp>
#include <set>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
namespace Opm
{
void writeVtkData(const boost::array<int, 3>& dims,
const boost::array<double, 3>& cell_size,
const DataMap& data,
std::ostream& os)
{
// Dimension is hardcoded in the prototype and the next two lines,
// but the rest is flexible (allows dimension == 2 or 3).
int dimension = 3;
int num_cells = dims[0]*dims[1]*dims[2];
ASSERT(dimension == 2 || dimension == 3);
ASSERT(num_cells == dims[0]*dims[1]* (dimension == 2 ? 1 : dims[2]));
os << "# vtk DataFile Version 2.0\n";
os << "Structured Grid\n \n";
os << "ASCII \n";
os << "DATASET STRUCTURED_POINTS\n";
os << "DIMENSIONS "
<< dims[0] + 1 << " "
<< dims[1] + 1 << " ";
if (dimension == 3) {
os << dims[2] + 1;
} else {
os << 1;
}
os << "\n";
os << "ORIGIN " << 0.0 << " " << 0.0 << " " << 0.0 << "\n";
os << "SPACING " << cell_size[0] << " " << cell_size[1];
if (dimension == 3) {
os << " " << cell_size[2];
} else {
os << " " << 0.0;
}
os << "\n";
os << "\nCELL_DATA " << num_cells << '\n';
for (DataMap::const_iterator dit = data.begin(); dit != data.end(); ++dit) {
std::string name = dit->first;
os << "SCALARS " << name << " float" << '\n';
os << "LOOKUP_TABLE " << name << "_table " << '\n';
const std::vector<double>& field = *(dit->second);
// We always print only the first data item for every
// cell, using 'stride'.
// This is a hack to get water saturation nicely.
// \TODO: Extend to properly printing vector data.
const int stride = field.size()/num_cells;
const int num_per_line = 5;
for (int c = 0; c < num_cells; ++c) {
os << field[stride*c] << ' ';
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
}
typedef std::map<std::string, std::string> PMap;
struct Tag
{
Tag(const std::string& tag, const PMap& props, std::ostream& os)
: name_(tag), os_(os)
{
indent(os);
os << "<" << tag;
for (PMap::const_iterator it = props.begin(); it != props.end(); ++it) {
os << " " << it->first << "=\"" << it->second << "\"";
}
os << ">\n";
++indent_;
}
Tag(const std::string& tag, std::ostream& os)
: name_(tag), os_(os)
{
indent(os);
os << "<" << tag << ">\n";
++indent_;
}
~Tag()
{
--indent_;
indent(os_);
os_ << "</" << name_ << ">\n";
}
static void indent(std::ostream& os)
{
for (int i = 0; i < indent_; ++i) {
os << " ";
}
}
private:
static int indent_;
std::string name_;
std::ostream& os_;
};
int Tag::indent_ = 0;
void writeVtkData(const UnstructuredGrid& grid,
const DataMap& data,
std::ostream& os)
{
if (grid.dimensions != 3) {
THROW("Vtk output for 3d grids only");
}
os.precision(12);
os << "<?xml version=\"1.0\"?>\n";
PMap pm;
pm["type"] = "UnstructuredGrid";
Tag vtkfiletag("VTKFile", pm, os);
Tag ugtag("UnstructuredGrid", os);
int num_pts = grid.number_of_nodes;
int num_cells = grid.number_of_cells;
pm.clear();
pm["NumberOfPoints"] = boost::lexical_cast<std::string>(num_pts);
pm["NumberOfCells"] = boost::lexical_cast<std::string>(num_cells);
Tag piecetag("Piece", pm, os);
{
Tag pointstag("Points", os);
pm.clear();
pm["type"] = "Float64";
pm["Name"] = "Coordinates";
pm["NumberOfComponents"] = "3";
pm["format"] = "ascii";
Tag datag("DataArray", pm, os);
for (int i = 0; i < num_pts; ++i) {
Tag::indent(os);
os << grid.node_coordinates[3*i + 0] << ' '
<< grid.node_coordinates[3*i + 1] << ' '
<< grid.node_coordinates[3*i + 2] << '\n';
}
}
{
Tag cellstag("Cells", os);
pm.clear();
pm["type"] = "Int32";
pm["NumberOfComponents"] = "1";
pm["format"] = "ascii";
std::vector<int> cell_numpts;
cell_numpts.reserve(num_cells);
{
pm["Name"] = "connectivity";
Tag t("DataArray", pm, os);
int hf = 0;
for (int c = 0; c < num_cells; ++c) {
std::set<int> cell_pts;
for (; hf < grid.cell_facepos[c+1]; ++hf) {
int f = grid.cell_faces[hf];
const int* fnbeg = grid.face_nodes + grid.face_nodepos[f];
const int* fnend = grid.face_nodes + grid.face_nodepos[f+1];
cell_pts.insert(fnbeg, fnend);
}
cell_numpts.push_back(cell_pts.size());
Tag::indent(os);
std::copy(cell_pts.begin(), cell_pts.end(),
std::ostream_iterator<int>(os, " "));
os << '\n';
}
}
{
pm["Name"] = "offsets";
Tag t("DataArray", pm, os);
int offset = 0;
const int num_per_line = 10;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
offset += cell_numpts[c];
os << offset << ' ';
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
std::vector<int> cell_foffsets;
cell_foffsets.reserve(num_cells);
{
pm["Name"] = "faces";
Tag t("DataArray", pm, os);
const int* fp = grid.cell_facepos;
int offset = 0;
for (int c = 0; c < num_cells; ++c) {
Tag::indent(os);
os << fp[c+1] - fp[c] << '\n';
++offset;
for (int hf = fp[c]; hf < fp[c+1]; ++hf) {
int f = grid.cell_faces[hf];
const int* np = grid.face_nodepos;
int f_num_pts = np[f+1] - np[f];
Tag::indent(os);
os << f_num_pts << ' ';
++offset;
std::copy(grid.face_nodes + np[f],
grid.face_nodes + np[f+1],
std::ostream_iterator<int>(os, " "));
os << '\n';
offset += f_num_pts;
}
cell_foffsets.push_back(offset);
}
}
{
pm["Name"] = "faceoffsets";
Tag t("DataArray", pm, os);
const int num_per_line = 10;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
os << cell_foffsets[c] << ' ';
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
{
pm["type"] = "UInt8";
pm["Name"] = "types";
Tag t("DataArray", pm, os);
const int num_per_line = 10;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
os << "42 ";
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
}
{
pm.clear();
if (data.find("saturation") != data.end()) {
pm["Scalars"] = "saturation";
} else if (data.find("pressure") != data.end()) {
pm["Scalars"] = "pressure";
}
Tag celldatatag("CellData", pm, os);
pm.clear();
pm["NumberOfComponents"] = "1";
pm["format"] = "ascii";
pm["type"] = "Float64";
for (DataMap::const_iterator dit = data.begin(); dit != data.end(); ++dit) {
pm["Name"] = dit->first;
const std::vector<double>& field = *(dit->second);
const int num_comps = field.size()/grid.number_of_cells;
pm["NumberOfComponents"] = boost::lexical_cast<std::string>(num_comps);
Tag ptag("DataArray", pm, os);
const int num_per_line = num_comps == 1 ? 5 : num_comps;
for (int item = 0; item < num_cells*num_comps; ++item) {
if (item % num_per_line == 0) {
Tag::indent(os);
}
double value = field[item];
if (std::fabs(value) < std::numeric_limits<double>::min()) {
// Avoiding denormal numbers to work around
// bug in Paraview.
value = 0.0;
}
os << value << ' ';
if (item % num_per_line == num_per_line - 1
|| item == num_cells - 1) {
os << '\n';
}
}
}
}
}
} // namespace Opm