opm-core/opm/core/utility/VelocityInterpolation.cpp
Andreas Lauser 884c5ab027 make config.h the first header to be included in any compile unit
this is required for consistency amongst the compile units which are
linked into the same library and seems to be forgotten quite
frequently.
2013-04-10 12:56:14 +02:00

184 lines
7.3 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/utility/VelocityInterpolation.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/blas_lapack.h>
namespace Opm
{
// -------- Methods of class VelocityInterpolationInterface --------
VelocityInterpolationInterface::~VelocityInterpolationInterface()
{
}
// -------- Methods of class VelocityInterpolationConstant --------
/// Constructor.
/// \param[in] grid A grid.
VelocityInterpolationConstant::VelocityInterpolationConstant(const UnstructuredGrid& grid)
: grid_(grid)
{
}
/// Set up fluxes for interpolation.
/// \param[in] flux One signed flux per face in the grid.
void VelocityInterpolationConstant::setupFluxes(const double* flux)
{
flux_ = flux;
}
/// Interpolate velocity.
/// \param[in] cell Cell in which to interpolate.
/// \param[in] x Coordinates of point at which to interpolate.
/// Must be array of length grid.dimensions.
/// \param[out] v Interpolated velocity.
/// Must be array of length grid.dimensions.
void VelocityInterpolationConstant::interpolate(const int cell,
const double* /*x*/,
double* v) const
{
const int dim = grid_.dimensions;
std::fill(v, v + dim, 0.0);
const double* cc = grid_.cell_centroids + cell*dim;
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
const int face = grid_.cell_faces[hface];
const double* fc = grid_.face_centroids + face*dim;
double face_flux = 0.0;
if (cell == grid_.face_cells[2*face]) {
face_flux = flux_[face];
} else {
ASSERT(cell == grid_.face_cells[2*face + 1]);
face_flux = -flux_[face];
}
for (int dd = 0; dd < dim; ++dd) {
v[dd] += face_flux * (fc[dd] - cc[dd]) / grid_.cell_volumes[cell];
}
}
}
// -------- Methods of class VelocityInterpolationECVI --------
/// Constructor.
/// \param[in] grid A grid.
VelocityInterpolationECVI::VelocityInterpolationECVI(const UnstructuredGrid& grid)
: bcmethod_(grid), grid_(grid)
{
}
/// Set up fluxes for interpolation.
/// Computes the corner velocities.
/// \param[in] flux One signed flux per face in the grid.
void VelocityInterpolationECVI::setupFluxes(const double* flux)
{
// We must now update the velocity member of the CornerInfo
// for each corner.
const int dim = grid_.dimensions;
std::vector<double> N(dim*dim); // Normals matrix. Fortran ordering!
std::vector<double> orig_N(dim*dim); // Normals matrix. Fortran ordering!
std::vector<double> f(dim); // Flux vector.
std::vector<double> orig_f(dim); // Flux vector.
std::vector<MAT_SIZE_T> piv(dim); // For LAPACK solve
const SparseTable<WachspressCoord::CornerInfo>& all_ci = bcmethod_.cornerInfo();
const std::vector<int>& adj_faces = bcmethod_.adjacentFaces();
corner_velocity_.resize(dim*all_ci.dataSize());
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
const int num_cell_corners = bcmethod_.numCorners(cell);
for (int cell_corner = 0; cell_corner < num_cell_corners; ++cell_corner) {
const int cid = all_ci[cell][cell_corner].corner_id;
for (int adj_ix = 0; adj_ix < dim; ++adj_ix) {
const int face = adj_faces[dim*cid + adj_ix];
const double* fn = grid_.face_normals + dim*face;
for (int dd = 0; dd < dim; ++dd) {
N[adj_ix + dd*dim] = fn[dd]; // Row adj_ix, column dd
}
f[adj_ix] = flux[face];
}
// Now we have built N and f. Solve Nv = f.
// Note that the face orientations do not matter,
// as changing an orientation would negate both a
// row in N and the corresponding element of f.
// Solving linear equation with LAPACK.
MAT_SIZE_T n = dim;
MAT_SIZE_T nrhs = 1;
MAT_SIZE_T lda = n;
MAT_SIZE_T ldb = n;
MAT_SIZE_T info = 0;
orig_N = N;
orig_f = f;
dgesv_(&n, &nrhs, &N[0], &lda, &piv[0], &f[0], &ldb, &info);
if (info != 0) {
// Print the local matrix and rhs.
std::cerr << "Failed solving single-cell system Nv = f in cell " << cell
<< " with N = \n";
for (int row = 0; row < n; ++row) {
for (int col = 0; col < n; ++col) {
std::cerr << " " << orig_N[row + n*col];
}
std::cerr << '\n';
}
std::cerr << "and f = \n";
for (int row = 0; row < n; ++row) {
std::cerr << " " << orig_f[row] << '\n';
}
THROW("Lapack error: " << info << " encountered in cell " << cell);
}
// The solution ends up in f, so we must copy it.
std::copy(f.begin(), f.end(), corner_velocity_.begin() + dim*cid);
}
}
}
/// Interpolate velocity.
/// \param[in] cell Cell in which to interpolate.
/// \param[in] x Coordinates of point at which to interpolate.
/// Must be array of length grid.dimensions.
/// \param[out] v Interpolated velocity.
/// Must be array of length grid.dimensions.
void VelocityInterpolationECVI::interpolate(const int cell,
const double* x,
double* v) const
{
const int n = bcmethod_.numCorners(cell);
const int dim = grid_.dimensions;
bary_coord_.resize(n);
bcmethod_.cartToBary(cell, x, &bary_coord_[0]);
std::fill(v, v + dim, 0.0);
const SparseTable<WachspressCoord::CornerInfo>& all_ci = bcmethod_.cornerInfo();
for (int i = 0; i < n; ++i) {
const int cid = all_ci[cell][i].corner_id;
for (int dd = 0; dd < dim; ++dd) {
v[dd] += corner_velocity_[dim*cid + dd] * bary_coord_[i];
}
}
}
} // namespace Opm