241 lines
6.0 KiB
C
241 lines
6.0 KiB
C
/*
|
|
Copyright 2010 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "hash_set.h"
|
|
|
|
/* ======================================================================
|
|
* Macros
|
|
* ====================================================================== */
|
|
#define GOLDEN_RAT (0.6180339887498949) /* (sqrt(5) - 1) / 2 */
|
|
#define IS_POW2(x) (((x) & ((x) - 1)) == 0)
|
|
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
|
|
|
|
|
|
/* Define a hash array size (1<<p) capable of holding a set of size 'm' */
|
|
/* ---------------------------------------------------------------------- */
|
|
static size_t
|
|
hash_set_size(size_t m)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
size_t i;
|
|
|
|
if (m == 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (IS_POW2(m)) {
|
|
return m;
|
|
}
|
|
|
|
/* General case. Use next power of two. */
|
|
/* Algorithm due to
|
|
*
|
|
* Warren Jr., Henry S. (2002). Hacker's Delight.
|
|
* Addison Wesley. pp. 48. ISBN 978-0201914658
|
|
*
|
|
* by way of Wikipedia. */
|
|
m -= 1;
|
|
for (i = 1; i < CHAR_BIT * sizeof m; i <<= 1) {
|
|
m = m | (m >> i);
|
|
}
|
|
|
|
return m + 1;
|
|
}
|
|
|
|
|
|
/* Hash element 'k' into table of size 'm' (multiplication method) */
|
|
/* ---------------------------------------------------------------------- */
|
|
static size_t
|
|
hash_set_idx(int k, size_t m)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
double x = fmod(k * GOLDEN_RAT, 1.0);
|
|
double y = floor(m * x);
|
|
return y;
|
|
}
|
|
|
|
|
|
/* Insert element 'k' into set 's' of size 'm'
|
|
* (open addressing, double probing). */
|
|
/* ---------------------------------------------------------------------- */
|
|
static size_t
|
|
hash_set_insert_core(int k, size_t m, int *s)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
size_t h1, h2, i, j;
|
|
|
|
assert ((0 < m) && (m < (size_t)(-1)));
|
|
assert (IS_POW2(m));
|
|
|
|
j = h1 = hash_set_idx(k, m);
|
|
assert (h1 < m);
|
|
|
|
if (s[j] == -1) { s[j] = k; }
|
|
if (s[j] == k) { return j; }
|
|
|
|
/* Double hash probing. h2 relatively prime to 'm' */
|
|
h2 = 2 * hash_set_idx(k, MAX(m >> 1, 1)) + 1;
|
|
|
|
for (i = 1; (s[j] != -1) && (s[j] != k) && (i < m); i++) {
|
|
j += h2;
|
|
j &= m - 1; /* Modulo m since IS_POW2(m). */
|
|
}
|
|
|
|
if ((s[j] == -1) || (s[j] == k)) {
|
|
s[j] = k; /* Possibly no-op. */
|
|
} else {
|
|
j = m + 1; /* Invalid. Caveat emptor. */
|
|
}
|
|
|
|
return j;
|
|
}
|
|
|
|
|
|
/* Increase size of hash set 't' to hold 'm' elements whilst copying
|
|
* existing elements. This is typically fairly expensive. */
|
|
/* ---------------------------------------------------------------------- */
|
|
static int
|
|
hash_set_expand(size_t m, struct hash_set *t)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
int ret, *s, *p;
|
|
size_t i;
|
|
|
|
assert (m > t->m);
|
|
|
|
s = malloc(m * sizeof *s);
|
|
if (s != NULL) {
|
|
memset(s, -1, m * sizeof *s);
|
|
|
|
for (i = 0; i < t->m; i++) {
|
|
ret = hash_set_insert_core(t->s[i], m, s);
|
|
assert ((size_t) ret < m);
|
|
}
|
|
|
|
p = t->s;
|
|
t->s = s;
|
|
t->m = m;
|
|
|
|
free(p);
|
|
|
|
ret = m;
|
|
} else {
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Release dynamic memory resources for hash set 't'. */
|
|
/* ---------------------------------------------------------------------- */
|
|
void
|
|
hash_set_deallocate(struct hash_set *t)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
if (t != NULL) {
|
|
free(t->s);
|
|
}
|
|
|
|
free(t);
|
|
}
|
|
|
|
|
|
/* Construct an emtpy hash set capable of holding 'm' elements */
|
|
/* ---------------------------------------------------------------------- */
|
|
struct hash_set *
|
|
hash_set_allocate(int m)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
size_t sz;
|
|
struct hash_set *new;
|
|
|
|
new = malloc(1 * sizeof *new);
|
|
if (new != NULL) {
|
|
sz = hash_set_size(m);
|
|
new->s = malloc(sz * sizeof *new->s);
|
|
|
|
if (new->s == NULL) {
|
|
hash_set_deallocate(new);
|
|
|
|
new = NULL;
|
|
} else {
|
|
memset(new->s, -1, sz * sizeof *new->s);
|
|
new->m = sz;
|
|
}
|
|
}
|
|
|
|
return new;
|
|
}
|
|
|
|
|
|
/* Insert element 'k' into hash set 't'. */
|
|
/* ---------------------------------------------------------------------- */
|
|
int
|
|
hash_set_insert(int k, struct hash_set *t)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
int ret;
|
|
size_t i;
|
|
|
|
assert (k >= 0);
|
|
assert (t != NULL);
|
|
assert (IS_POW2(t->m));
|
|
|
|
i = hash_set_insert_core(k, t->m, t->s);
|
|
if (i == t->m + 1) {
|
|
/* Table full. Preferable an infrequent occurrence. Expand
|
|
* table and re-insert key (if possible). */
|
|
ret = hash_set_expand(t->m << 1, t);
|
|
|
|
if (ret > 0) {
|
|
i = hash_set_insert_core(k, t->m, t->s);
|
|
assert (i < t->m);
|
|
|
|
ret = k;
|
|
}
|
|
} else {
|
|
ret = k;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
size_t
|
|
hash_set_count_elms(const struct hash_set *set)
|
|
/* ---------------------------------------------------------------------- */
|
|
{
|
|
size_t i, n;
|
|
|
|
n = 0;
|
|
for (i = 0; i < set->m; i++) {
|
|
n += set->s[i] != -1;
|
|
}
|
|
|
|
return n;
|
|
}
|