opm-core/ifsh.c
Bård Skaflestad a974c729bd Fix typos.
2010-10-12 11:05:55 +00:00

685 lines
22 KiB
C

/*
Copyright 2010 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "ifsh.h"
#include "hybsys.h"
#include "hybsys_global.h"
#if defined MAX
#undef MAX
#endif
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
struct ifsh_impl {
int nc, nf, nw; /* Number of cells, faces, wells */
double *Binv; /* Effective inverse IP */
double *gpress; /* Effective gravity pressure */
double *cflux; /* Cell (half-contact) fluxes */
double *WI; /* Effective inverse IP, wells */
double *wdp; /* Effective grav. press, wells */
int *pgconn; /* Start pointers, grid connections */
int *gconn; /* Grid connections */
int *cwpos; /* Start pointers, c->w mapping */
int *cwells; /* c->w mapping */
struct hybsys *sys; /* Hybrid cell contribs */
struct hybsys_well *wsys; /* Hybrid cell contribs from wells */
double *work; /* Scratch array, floating point */
int *iwork; /* Scratch array, integers */
/* Linear storage goes here... */
int *idata; /* Actual storage array, integers */
double *ddata; /* Actual storage array, floating point */
};
/* ---------------------------------------------------------------------- */
/* Determine nnz (=sum(diff(facePos)^2)) and max(diff(facePos) for grid */
/* ---------------------------------------------------------------------- */
static void
count_grid_connections(grid_t *G, int *max_ngconn, size_t *sum_ngconn2)
/* ---------------------------------------------------------------------- */
{
int c, n;
*max_ngconn = INT_MIN;
*sum_ngconn2 = 0;
for (c = 0; c < G->number_of_cells; c++) {
n = G->cell_facepos[c + 1] - G->cell_facepos[c];
*max_ngconn = MAX(*max_ngconn, n);
*sum_ngconn2 += n * n;
}
}
/* ---------------------------------------------------------------------- */
static void
ifsh_compute_table_sz(grid_t *G, well_t *W,
int max_ngconn, size_t sum_ngconn2,
size_t *nnu, size_t *idata_sz, size_t *ddata_sz)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
*nnu = G->number_of_faces;
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
*idata_sz = max_ngconn; /* iwork */
*ddata_sz = 2 * (*nnu); /* rhs + soln */
*ddata_sz += sum_ngconn2; /* Binv */
*ddata_sz += ngconn_tot; /* gpress */
*ddata_sz += ngconn_tot; /* cflux */
*ddata_sz += max_ngconn; /* work */
if (W != NULL) {
*nnu += W->number_of_wells;
/* cwpos */
*idata_sz += nc + 1;
/* cwells */
*idata_sz += 2 * W->well_connpos[ W->number_of_wells ];
/* rhs + soln */
*ddata_sz += 2 * W->number_of_wells;
/* WI, wdp */
*ddata_sz += 2 * W->well_connpos[ W->number_of_wells ];
}
}
/* ---------------------------------------------------------------------- */
/* Allocate and define supporting structures for assembling the global
* system of linear equations to couple the grid (reservoir)
* connections represented by 'G' and, if present (i.e., non-NULL),
* the well connections represented by 'W'. */
/* ---------------------------------------------------------------------- */
struct ifsh_data *
ifsh_construct(grid_t *G, well_t *W)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
size_t idata_sz, ddata_sz, nnu;
struct ifsh_data *new;
assert (G != NULL);
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->A = hybsys_define_globconn(G, W);
new->pimpl = NULL;
if (new->A == NULL) {
ifsh_destroy(new);
new = NULL;
}
}
if (new != NULL) {
new->pimpl = malloc(1 * sizeof *new->pimpl);
if (new->pimpl == NULL) {
ifsh_destroy(new);
new = NULL;
} else {
new->pimpl->sys = NULL; new->pimpl->wsys = NULL;
new->pimpl->idata = NULL; new->pimpl->ddata = NULL;
}
}
if (new != NULL) {
count_grid_connections(G, &new->max_ngconn, &new->sum_ngconn2);
ifsh_compute_table_sz(G, W, new->max_ngconn, new->sum_ngconn2,
&nnu, &idata_sz, &ddata_sz);
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
new->pimpl->idata = malloc(idata_sz * sizeof *new->pimpl->idata);
new->pimpl->ddata = malloc(ddata_sz * sizeof *new->pimpl->ddata);
new->pimpl->sys = hybsys_allocate_symm(new->max_ngconn,
nc, ngconn_tot);
if ((new->pimpl->idata == NULL) ||
(new->pimpl->ddata == NULL) || (new->pimpl->sys == NULL)) {
ifsh_destroy(new);
new = NULL;
} else {
new->b = new->pimpl->ddata;
new->x = new->b + nnu;
new->pimpl->Binv = new->x + nnu;
new->pimpl->gpress = new->pimpl->Binv + new->sum_ngconn2;
new->pimpl->cflux = new->pimpl->gpress + ngconn_tot;
new->pimpl->work = new->pimpl->cflux + ngconn_tot;
new->pimpl->iwork = new->pimpl->idata;
hybsys_init(new->max_ngconn, new->pimpl->sys);
}
}
if ((new != NULL) && (W != NULL)) {
new->pimpl->cwpos = new->pimpl->iwork + new->max_ngconn;
new->pimpl->cwells = new->pimpl->cwpos + nc + 1;
memset(new->pimpl->cwpos, 0, (nc + 1) * sizeof *new->pimpl->cwpos);
derive_cell_wells(nc, W, new->pimpl->cwpos, new->pimpl->cwells);
new->pimpl->wsys = hybsys_well_allocate_symm(new->max_ngconn, nc,
new->pimpl->cwpos);
if (new->pimpl->wsys == NULL) {
ifsh_destroy(new);
new = NULL;
} else {
new->pimpl->WI = new->pimpl->work + new->max_ngconn;
new->pimpl->wdp = new->pimpl->WI + W->well_connpos[ W->number_of_wells ];
}
}
if (new != NULL) {
new->pimpl->nc = nc;
new->pimpl->nf = G->number_of_faces;
new->pimpl->nw = (W != NULL) ? W->number_of_wells : 0;
/* Contentious. Imposes severe restrictions on lifetime(G). */
new->pimpl->pgconn = G->cell_facepos;
new->pimpl->gconn = G->cell_faces;
}
return new;
}
/* ---------------------------------------------------------------------- */
/* Release dynamic memory resources associated to internal data of a
* particular (incompressible) flow solver instance. */
/* ---------------------------------------------------------------------- */
static void
ifsh_destroy_impl(struct ifsh_impl *pimpl)
/* ---------------------------------------------------------------------- */
{
if (pimpl != NULL) {
hybsys_well_free(pimpl->wsys );
hybsys_free (pimpl->sys );
free (pimpl->ddata);
free (pimpl->idata);
}
free(pimpl);
}
/* ---------------------------------------------------------------------- */
/* Release memory resources for ifsh data-handle 'h' */
/* ---------------------------------------------------------------------- */
void
ifsh_destroy(struct ifsh_data *h)
/* ---------------------------------------------------------------------- */
{
if (h != NULL) {
ifsh_destroy_impl(h->pimpl);
csrmatrix_delete (h->A );
}
free(h);
}
/* ---------------------------------------------------------------------- */
/* Eliminate 'npp' prescribed (Dirichlet) conditions (locdof,dofval)
* from global system of linear equations. Move known values to RHS
* whilst zeroing coefficient matrix contributions. Local system of
* dimension 'n'. */
/* ---------------------------------------------------------------------- */
static void
ifsh_explicit_elimination(int n, int npp,
int *locdof, double *dofval,
double *S, double *r)
/* ---------------------------------------------------------------------- */
{
int i, p;
for (i = 0; i < npp; i++) {
for (p = (locdof[i] + 1) % n; p != locdof[i]; p = (p + 1) % n) {
/* Subtract known values from RHS. */
r[p] -= S[p + locdof[i]*n] * dofval[i];
/* Eliminate DOF (zero row/col "locdof[i]"; leave diagonal). */
S[p + locdof[i]*n] = 0.0;
S[locdof[i] + p*n] = 0.0;
}
/* Produce trivial equation S(i,i)*x(i) = S(i,i)*x0(i). */
r[p] = S[p * (n + 1)] * dofval[i];
}
}
/* ---------------------------------------------------------------------- */
/* Impose boundary conditions on local contribution to global system. */
/* ---------------------------------------------------------------------- */
static int
ifsh_impose_bc(int nconn, int *conn, flowbc_t *bc,
struct ifsh_impl *pimpl)
/* ---------------------------------------------------------------------- */
{
int i, npp, f;
npp = 0;
for (i = 0; i < nconn; i++) {
f = conn[i];
if (bc->type[f] == PRESSURE) {
pimpl->work [npp] = bc->bcval[f];
pimpl->iwork[npp] = i;
npp += 1;
} else if (bc->type[f] == FLUX) {
pimpl->sys->r[i] -= bc->bcval[f];
}
}
if (npp > 0) {
ifsh_explicit_elimination(nconn, npp,
pimpl->iwork,
pimpl->work,
pimpl->sys->S,
pimpl->sys->r);
}
return npp;
}
/* ---------------------------------------------------------------------- */
static void
ifsh_set_effective_params(const double *Binv,
const double *gpress,
const double *totmob,
const double *omega,
struct ifsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int c, n, nc, p1, p2, i;
int *pgconn, *gconn;
double *BI, *gp;
nc = ifsh->pimpl->nc;
pgconn = ifsh->pimpl->pgconn;
gconn = ifsh->pimpl->gconn;
BI = ifsh->pimpl->Binv;
gp = ifsh->pimpl->gpress;
p1 = p2 = 0;
for (c = 0; c < nc; c++) {
n = pgconn[c + 1] - pgconn[c];
for (i = 0; i < n ; i++) {
gp[p1 + i] = omega[c] * gpress[p1 + i];
}
for (i = 0; i < n * n; i++) {
BI[p2 + i] = totmob[c] * Binv[p2 + i];
}
p1 += n;
p2 += n * n;
}
}
/* ---------------------------------------------------------------------- */
static int
ifsh_assemble_grid(flowbc_t *bc,
const double *src,
struct ifsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int c, n, nc, p1, p2;
int npp;
int *pgconn, *gconn;
double *BI, *gp;
nc = ifsh->pimpl->nc;
pgconn = ifsh->pimpl->pgconn;
gconn = ifsh->pimpl->gconn;
BI = ifsh->pimpl->Binv;
gp = ifsh->pimpl->gpress;
p1 = p2 = npp = 0;
for (c = 0; c < nc; c++) {
n = pgconn[c + 1] - pgconn[c];
hybsys_cellcontrib_symm(c, n, p1, p2, gp, src, BI,
ifsh->pimpl->sys);
npp += ifsh_impose_bc(n, gconn + p1, bc, ifsh->pimpl);
hybsys_global_assemble_cell(n, gconn + p1,
ifsh->pimpl->sys->S,
ifsh->pimpl->sys->r,
ifsh->A, ifsh->b);
p1 += n;
p2 += n * n;
}
return npp;
}
/* ---------------------------------------------------------------------- */
static void
ifsh_set_effective_well_params(const double *WI,
const double *wdp,
const double *totmob,
const double *omega,
struct ifsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int c, nc, i, perf;
int *cwpos, *cwells;
double *wsys_WI, *wsys_wdp;
nc = ifsh->pimpl->nc;
cwpos = ifsh->pimpl->cwpos;
cwells = ifsh->pimpl->cwells;
wsys_WI = ifsh->pimpl->WI;
wsys_wdp = ifsh->pimpl->wdp;
for (c = i = 0; c < nc; c++) {
for (; i < cwpos[c + 1]; i++) {
perf = cwells[2*i + 1];
wsys_WI [i] = totmob[c] * WI [perf];
wsys_wdp[i] = omega [c] * wdp[perf];
}
}
}
/* ---------------------------------------------------------------------- */
static void
ifsh_impose_well_control(int c,
flowbc_t *bc,
well_control_t *wctrl,
struct ifsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int ngconn, nwconn, i, w1, w2, wg, f;
int *pgconn, *gconn, *pwconn, *wconn;
double bhp;
double *r, *r2w, *w2w;
/* Enforce symmetric system */
assert (ifsh->pimpl->wsys->r2w == ifsh->pimpl->wsys->w2r);
pgconn = ifsh->pimpl->pgconn;
pwconn = ifsh->pimpl->cwpos;
gconn = ifsh->pimpl->gconn + pgconn[c];
wconn = ifsh->pimpl->cwells + 2*pwconn[c];
ngconn = pgconn[c + 1] - pgconn[c];
nwconn = pwconn[c + 1] - pwconn[c];
r2w = ifsh->pimpl->wsys->r2w;
w2w = ifsh->pimpl->wsys->w2w;
r = ifsh->pimpl->wsys->r ;
/* Adapt local system to prescribed boundary pressures (r->w) */
for (i = 0; i < ngconn; i++) {
f = gconn[i];
if (bc->type[f] == PRESSURE) {
for (w1 = 0; w1 < nwconn; w1++) {
/* Eliminate prescribed (boundary) pressure value */
r [ngconn + w1] -= r2w[i + w1*ngconn] * bc->bcval[f];
r2w[i + w1*ngconn] = 0.0;
}
r[i] = 0.0; /* RHS value handled in *reservoir* asm */
}
}
/* Adapt local system to prescribed well (bottom-hole) pressures;
* w->r and w->w. */
for (w1 = 0; w1 < nwconn; w1++) {
wg = wconn[2*w1 + 0];
if (wctrl->ctrl[wg] == BHP) {
bhp = wctrl->target[wg];
/* Well->reservoir */
for (i = 0; i < ngconn; i++) {
assert ((bc->type[gconn[i]] != PRESSURE) ||
!(fabs(r2w[i + w1*ngconn]) > 0.0));
r [i] -= r2w[i + w1*ngconn] * bhp;
r2w[i + w1*ngconn] = 0.0;
}
/* Well->well */
for (w2 = (w1 + 1) % nwconn; w2 != w1; w2 = (w2 + 1) % nwconn) {
r [ngconn + w2] -= w2w[w2 + w1*nwconn] * bhp;
w2w[w2 + w1*ngconn] = 0.0;
w2w[w1 + w2*ngconn] = 0.0;
}
/* Assemble final well equation of the form S*p_bh = S*p_bh^0 */
assert (fabs(w2w[w1 * (nwconn + 1)]) > 0.0);
r[ngconn + w1] = w2w[w1 * (nwconn + 1)] * bhp;
}
}
}
/* ---------------------------------------------------------------------- */
static int
ifsh_assemble_well(flowbc_t *bc,
well_control_t *wctrl,
struct ifsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int npp;
int ngconn, nwconn, c, nc, w;
int *pgconn, *gconn, *pwconn, *wconn;
nc = ifsh->pimpl->nc;
pgconn = ifsh->pimpl->pgconn;
gconn = ifsh->pimpl->gconn;
pwconn = ifsh->pimpl->cwpos;
wconn = ifsh->pimpl->cwells;
for (c = 0; c < nc; c++) {
ngconn = pgconn[c + 1] - pgconn[c];
nwconn = pwconn[c + 1] - pwconn[c];
if (nwconn > 0) {
hybsys_well_cellcontrib_symm(c, ngconn, pgconn[c],
pwconn,
ifsh->pimpl->WI,
ifsh->pimpl->wdp,
ifsh->pimpl->sys,
ifsh->pimpl->wsys);
ifsh_impose_well_control(c, bc, wctrl, ifsh);
hybsys_global_assemble_well_sym(ifsh->pimpl->nf,
ngconn, gconn + pgconn[c],
nwconn, wconn + 2*pwconn[c] + 0,
ifsh->pimpl->wsys->r2w,
ifsh->pimpl->wsys->w2w,
ifsh->pimpl->wsys->r,
ifsh->A, ifsh->b);
}
}
npp = 0;
for (w = 0; w < ifsh->pimpl->nw; w++) {
if (wctrl->ctrl[w] == BHP) {
npp += 1;
} else if (wctrl->ctrl[w] == RATE) {
/* Impose total rate constraint.
*
* Note sign resulting from ->target[w] denoting
* *injection* flux. */
ifsh->b[ifsh->pimpl->nf + w] -= - wctrl->target[w];
}
}
return npp;
}
/* ---------------------------------------------------------------------- */
/* Assemble global system of linear equations
*
* ifsh->A * ifsh->x = ifsh->b
*
* from local inner product matrices Binv, gravity pressure gpress,
* boundary conditions bc, source terms src and fluid properties
* totmob and omega. */
/* ---------------------------------------------------------------------- */
void
ifsh_assemble(flowbc_t *bc,
double *src,
double *Binv,
double *gpress,
well_control_t *wctrl,
double *WI,
double *wdp,
double *totmob, /* \sum_i \lambda_i */
double *omega, /* \sum_i \rho_i f_i */
struct ifsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int npp; /* Number of prescribed pressure values */
ifsh_set_effective_params(Binv, gpress, totmob, omega, ifsh);
hybsys_schur_comp_symm(ifsh->pimpl->nc,
ifsh->pimpl->pgconn,
ifsh->pimpl->Binv,
ifsh->pimpl->sys);
if (ifsh->pimpl->nw > 0) {
ifsh_set_effective_well_params(WI, wdp, totmob, omega, ifsh);
hybsys_well_schur_comp_symm(ifsh->pimpl->nc,
ifsh->pimpl->cwpos,
ifsh->pimpl->WI,
ifsh->pimpl->sys,
ifsh->pimpl->wsys);
}
npp = ifsh_assemble_grid(bc, src, ifsh);
if (ifsh->pimpl->nw > 0) {
npp += ifsh_assemble_well(bc, wctrl, ifsh);
}
if (npp == 0) {
ifsh->A->sa[0] *= 2; /* Remove zero eigenvalue */
}
}
/* ---------------------------------------------------------------------- */
/* Compute cell pressures (cpress) and interface fluxes (fflux) from
* current solution of system of linear equations, h->x. Back
* substitution process, projected half-contact fluxes. */
/* ---------------------------------------------------------------------- */
void
ifsh_press_flux(grid_t *G, struct ifsh_data *h,
double *cpress, double *fflux,
double *wpress, double *wflux)
/* ---------------------------------------------------------------------- */
{
int c, f, i;
double s;
hybsys_compute_press_flux(G->number_of_cells,
G->cell_facepos,
G->cell_faces,
h->pimpl->gpress,
h->pimpl->Binv,
h->pimpl->sys,
h->x, cpress, h->pimpl->cflux,
h->pimpl->work);
if (h->pimpl->nw > 0) {
assert ((wpress != NULL) && (wflux != NULL));
hybsys_compute_press_flux_well(G->number_of_cells, G->cell_facepos,
G->number_of_faces, h->pimpl->nw,
h->pimpl->cwpos, h->pimpl->cwells,
h->pimpl->Binv, h->pimpl->WI,
h->pimpl->wdp, h->pimpl->sys,
h->pimpl->wsys, h->x, cpress,
h->pimpl->cflux, wpress, wflux,
h->pimpl->work);
}
for (f = 0; f < G->number_of_faces; f++) { fflux[f] = 0.0; }
i = 0;
for (c = 0; c < G->number_of_cells; c++) {
for (; i < G->cell_facepos[c + 1]; i++) {
f = G->cell_faces[i];
s = 2.0*(G->face_cells[2*f + 0] == c) - 1.0;
fflux[f] += s * h->pimpl->cflux[i];
}
}
for (f = 0; f < G->number_of_faces; f++) {
i = (G->face_cells[2*f + 0] >= 0) +
(G->face_cells[2*f + 1] >= 0);
fflux[f] /= i;
}
}