186 lines
5.5 KiB
C
186 lines
5.5 KiB
C
/*
|
|
Copyright 2010 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "blas_lapack.h"
|
|
#include "mimetic.h"
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
void
|
|
mim_ip_simple_all(int ncells, int d, int max_nconn, int *ncf,
|
|
int *pconn, int *conn,
|
|
int *fneighbour, double *fcentroid, double *fnormal,
|
|
double *farea, double *ccentroid, double *cvol,
|
|
double *perm, double *Binv)
|
|
/* ------------------------------------------------------------------ */
|
|
{
|
|
int i, j, c, f, nf, nconn, fpos2, lwork;
|
|
|
|
double *C, *N, *A, *work, s;
|
|
|
|
double cc[3] = { 0.0 }; /* No more than 3 space dimensions */
|
|
|
|
lwork = 64 * (max_nconn * d); /* 64 from ILAENV() */
|
|
C = malloc((max_nconn * d) * sizeof *C);
|
|
N = malloc((max_nconn * d) * sizeof *N);
|
|
A = malloc(max_nconn * sizeof *A);
|
|
work = malloc(lwork * sizeof *work);
|
|
|
|
if ((C != NULL) && (N != NULL) && (A != NULL) && (work != NULL)) {
|
|
fpos2 = 0;
|
|
|
|
for (c = 0; c < ncells; c++) {
|
|
for (j = 0; j < d; j++) {
|
|
cc[j] = ccentroid[j + c*d];
|
|
}
|
|
|
|
nf = ncf[c];
|
|
|
|
for (i = 0; i < nf; i++) {
|
|
f = conn[pconn[c] + i];
|
|
s = 2.0*(fneighbour[2 * f] == c) - 1.0;
|
|
|
|
A[i] = farea[f];
|
|
|
|
for (j = 0; j < d; j++) {
|
|
C[i + j*nf] = fcentroid [j + f*d] - cc[j];
|
|
N[i + j*nf] = s * fnormal[j + f*d];
|
|
}
|
|
}
|
|
|
|
nconn = pconn[c + 1] - pconn[c];
|
|
|
|
mim_ip_simple(nf, nconn, d, cvol[c], &perm[c * d * d],
|
|
C, A, N, &Binv[fpos2], work, lwork);
|
|
|
|
fpos2 += nconn * nconn;
|
|
}
|
|
}
|
|
|
|
free(work); free(A); free(N); free(C);
|
|
}
|
|
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
void
|
|
mim_ip_simple(int nf, int nconn, int d,
|
|
double v, double *K, double *C,
|
|
double *A, double *N,
|
|
double *Binv,
|
|
double *work, int lwork)
|
|
/* ------------------------------------------------------------------ */
|
|
{
|
|
mim_ip_span_nullspace(nf, nconn, d, C, A, Binv, work, lwork);
|
|
mim_ip_linpress_exact(nf, nconn, d, v, K, N, Binv, work, lwork);
|
|
}
|
|
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
void
|
|
mim_ip_span_nullspace(int nf, int nconn, int d,
|
|
double *C,
|
|
double *A,
|
|
double *X,
|
|
double *work, int nwork)
|
|
/* ------------------------------------------------------------------ */
|
|
{
|
|
MAT_SIZE_T m, n, k, ldC, ldX, info, lwork;
|
|
|
|
int i, j;
|
|
double a1, a2;
|
|
|
|
double tau[3] = { 0.0 }; /* No more than 3 spatial dimensions */
|
|
|
|
/* Step 1) X(1:nf, 1:nf) <- I_{nf} */
|
|
for (j = 0; j < nf; j++) {
|
|
for (i = 0; i < nf; i++) {
|
|
X[i + j*nconn] = 0.0;
|
|
}
|
|
X[j * (nconn + 1)] = 1.0;
|
|
}
|
|
|
|
/* Step 2) C <- orth(A * C) */
|
|
for (j = 0; j < d; j++) {
|
|
for (i = 0; i < nf; i++) {
|
|
C[i + j*nf] *= A[i];
|
|
}
|
|
}
|
|
|
|
m = nf; n = d; ldC = nf; k = d; lwork = nwork;
|
|
dgeqrf_(&m, &n, C, &ldC, tau, work, &lwork, &info);
|
|
dorgqr_(&m, &n, &k, C, &ldC, tau, work, &lwork, &info);
|
|
|
|
/* Step 3) X <- A * (X - C*C') * A */
|
|
ldX = nconn;
|
|
a1 = -1.0; a2 = 1.0;
|
|
dsyrk_("Upper Triangular", "No Transpose",
|
|
&m, &n, &a1, C, &ldC, &a2, X, &ldX);
|
|
for (j = 0; j < nf; j++) {
|
|
for (i = 0; i <= j; i++) {
|
|
X[i + j*nconn] *= A[i] * A[j];
|
|
}
|
|
}
|
|
|
|
/* Account for DSYRK only assigning upper triangular part. */
|
|
for (j = 0; j < nf; j++) {
|
|
for (i = j + 1; i < nf; i++) {
|
|
X[i + j*nconn] = X[j + i*nconn];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
void
|
|
mim_ip_linpress_exact(int nf, int nconn, int d,
|
|
double vol, double *K,
|
|
double *N,
|
|
double *Binv,
|
|
double *work, int lwork)
|
|
/* ------------------------------------------------------------------ */
|
|
{
|
|
MAT_SIZE_T m, n, k, ld1, ld2, ldBinv;
|
|
int i;
|
|
double a1, a2, t;
|
|
|
|
assert (lwork >= d * nf);
|
|
|
|
t = 0.0;
|
|
for (i = 0; i < d; i++) {
|
|
t += K[i + i*d];
|
|
}
|
|
|
|
/* Step 4) T <- N*K */
|
|
m = nf ; n = d ; k = d;
|
|
ld1 = nf ; ld2 = d ;
|
|
a1 = 1.0; a2 = 0.0;
|
|
dgemm_("No Transpose", "No Transpose", &m, &n, &k,
|
|
&a1, N, &ld1, K, &ld2, &a2, work, &ld1);
|
|
|
|
/* Step 5) Binv <- (N*K*N' + t*X) / vol */
|
|
a1 = 1.0 / vol ;
|
|
a2 = 6.0 * t / (d * vol);
|
|
ldBinv = nconn;
|
|
dgemm_("No Transpose", "Transpose", &m, &m, &n,
|
|
&a1, work, &ld1, N, &ld1, &a2, Binv, &ldBinv);
|
|
}
|