269 lines
7.9 KiB
C++
269 lines
7.9 KiB
C++
/*
|
|
Copyright 2010 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_UNIFORMTABLELINEAR_HEADER_INCLUDED
|
|
#define OPM_UNIFORMTABLELINEAR_HEADER_INCLUDED
|
|
|
|
#include <cmath>
|
|
#include <exception>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <iostream>
|
|
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
|
|
namespace Opm {
|
|
|
|
/// @brief This class uses linear interpolation to compute the value
|
|
/// (and its derivative) of a function f sampled at uniform points.
|
|
/// @tparam T the range type of the function (should be an algebraic ring type)
|
|
template<typename T>
|
|
class UniformTableLinear
|
|
{
|
|
public:
|
|
/// @brief Default constructor.
|
|
UniformTableLinear();
|
|
|
|
/// @brief Construct from vector of y-values.
|
|
/// @param xmin the x value corresponding to the first y value.
|
|
/// @param xmax the x value corresponding to the last y value.
|
|
/// @param y_values vector of range values.
|
|
UniformTableLinear(double xmin,
|
|
double xmax,
|
|
const std::vector<T>& y_values);
|
|
|
|
/// @brief Construct from array of y-values.
|
|
/// @param xmin the x value corresponding to the first y value.
|
|
/// @param xmax the x value corresponding to the last y value.
|
|
/// @param y_values array of range values.
|
|
/// @param num_y_values the number of values in y_values.
|
|
UniformTableLinear(double xmin,
|
|
double xmax,
|
|
const T* y_values,
|
|
int num_y_values);
|
|
|
|
/// @brief Get the domain.
|
|
/// @return the domain as a pair of doubles.
|
|
std::pair<double, double> domain();
|
|
|
|
/// @brief Rescale the domain.
|
|
/// @param new_domain the new domain as a pair of doubles.
|
|
void rescaleDomain(std::pair<double, double> new_domain);
|
|
|
|
/// @brief Evaluate the value at x.
|
|
/// @param x a domain value
|
|
/// @return f(x)
|
|
double operator()(const double x) const;
|
|
|
|
/// @brief Evaluate the derivative at x.
|
|
/// @param x a domain value
|
|
/// @return f'(x)
|
|
double derivative(const double x) const;
|
|
|
|
/// @brief Equality operator.
|
|
/// @param other another UniformTableLinear.
|
|
/// @return true if they are represented exactly alike.
|
|
bool operator==(const UniformTableLinear& other) const;
|
|
|
|
/// @brief Policies for how to behave when trying to evaluate outside the domain.
|
|
enum RangePolicy {Throw = 0, ClosestValue = 1, Extrapolate = 2};
|
|
|
|
/// @brief Sets the behavioural policy for evaluation to the left of the domain.
|
|
/// @param rp the policy
|
|
void setLeftPolicy(RangePolicy rp);
|
|
|
|
/// @brief Sets the behavioural policy for evaluation to the right of the domain.
|
|
/// @param rp the policy
|
|
void setRightPolicy(RangePolicy rp);
|
|
|
|
protected:
|
|
double xmin_;
|
|
double xmax_;
|
|
double xdelta_;
|
|
std::vector<T> y_values_;
|
|
RangePolicy left_;
|
|
RangePolicy right_;
|
|
template <typename U>
|
|
friend std::ostream& operator<<(std::ostream& os, const UniformTableLinear<U>& t);
|
|
};
|
|
|
|
|
|
// Member implementations.
|
|
|
|
template<typename T>
|
|
inline
|
|
UniformTableLinear<T>
|
|
::UniformTableLinear()
|
|
: left_(ClosestValue), right_(ClosestValue)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
inline
|
|
UniformTableLinear<T>
|
|
::UniformTableLinear(double xmin,
|
|
double xmax,
|
|
const std::vector<T>& y_values)
|
|
: xmin_(xmin), xmax_(xmax), y_values_(y_values),
|
|
left_(ClosestValue), right_(ClosestValue)
|
|
{
|
|
assert(xmax > xmin);
|
|
assert(y_values.size() > 1);
|
|
xdelta_ = (xmax - xmin)/(y_values.size() - 1);
|
|
}
|
|
|
|
template<typename T>
|
|
inline
|
|
UniformTableLinear<T>
|
|
::UniformTableLinear(double xmin,
|
|
double xmax,
|
|
const T* y_values,
|
|
int num_y_values)
|
|
: xmin_(xmin), xmax_(xmax),
|
|
y_values_(y_values, y_values + num_y_values),
|
|
left_(ClosestValue), right_(ClosestValue)
|
|
{
|
|
assert(xmax > xmin);
|
|
assert(y_values_.size() > 1);
|
|
xdelta_ = (xmax - xmin)/(y_values_.size() - 1);
|
|
}
|
|
|
|
template<typename T>
|
|
inline std::pair<double, double>
|
|
UniformTableLinear<T>
|
|
::domain()
|
|
{
|
|
return std::make_pair(xmin_, xmax_);
|
|
}
|
|
|
|
template<typename T>
|
|
inline void
|
|
UniformTableLinear<T>
|
|
::rescaleDomain(std::pair<double, double> new_domain)
|
|
{
|
|
xmin_ = new_domain.first;
|
|
xmax_ = new_domain.second;
|
|
xdelta_ = (xmax_ - xmin_)/(y_values_.size() - 1);
|
|
}
|
|
|
|
template<typename T>
|
|
inline double
|
|
UniformTableLinear<T>
|
|
::operator()(const double xparam) const
|
|
{
|
|
// Implements ClosestValue policy.
|
|
double x = std::min(xparam, xmax_);
|
|
x = std::max(x, xmin_);
|
|
|
|
// Lookup is easy since we are uniform in x.
|
|
double pos = (x - xmin_)/xdelta_;
|
|
double posi = std::floor(pos);
|
|
int left = int(posi);
|
|
if (left == int(y_values_.size()) - 1) {
|
|
// We are at xmax_
|
|
return y_values_.back();
|
|
}
|
|
double w = pos - posi;
|
|
return (1.0 - w)*y_values_[left] + w*y_values_[left + 1];
|
|
}
|
|
|
|
template<typename T>
|
|
inline double
|
|
UniformTableLinear<T>
|
|
::derivative(const double xparam) const
|
|
{
|
|
// Implements derivative consistent
|
|
// with ClosestValue policy for function
|
|
double value;
|
|
if (xparam > xmax_ || xparam < xmin_) {
|
|
value = 0.0;
|
|
} else {
|
|
double x = std::min(xparam, xmax_);
|
|
x = std::max(x, xmin_);
|
|
// Lookup is easy since we are uniform in x.
|
|
double pos = (x - xmin_)/xdelta_;
|
|
double posi = std::floor(pos);
|
|
int left = int(posi);
|
|
if (left == int(y_values_.size()) - 1) {
|
|
// We are at xmax_
|
|
--left;
|
|
}
|
|
value = (y_values_[left + 1] - y_values_[left])/xdelta_;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
inline bool
|
|
UniformTableLinear<T>
|
|
::operator==(const UniformTableLinear<T>& other) const
|
|
{
|
|
return xmin_ == other.xmin_
|
|
&& xdelta_ == other.xdelta_
|
|
&& y_values_ == other.y_values_
|
|
&& left_ == other.left_
|
|
&& right_ == other.right_;
|
|
}
|
|
|
|
template<typename T>
|
|
inline void
|
|
UniformTableLinear<T>
|
|
::setLeftPolicy(RangePolicy rp)
|
|
{
|
|
if (rp != ClosestValue) {
|
|
OPM_THROW(std::runtime_error, "Only ClosestValue RangePolicy implemented.");
|
|
}
|
|
left_ = rp;
|
|
}
|
|
|
|
template<typename T>
|
|
inline void
|
|
UniformTableLinear<T>
|
|
::setRightPolicy(RangePolicy rp)
|
|
{
|
|
if (rp != ClosestValue) {
|
|
OPM_THROW(std::runtime_error, "Only ClosestValue RangePolicy implemented.");
|
|
}
|
|
right_ = rp;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
inline std::ostream& operator<<(std::ostream& os, const UniformTableLinear<T>& t)
|
|
{
|
|
int n = t.y_values_.size();
|
|
for (int i = 0; i < n; ++i) {
|
|
double f = double(i)/double(n - 1);
|
|
os << (1.0 - f)*t.xmin_ + f*t.xmax_
|
|
<< " " << t.y_values_[i] << '\n';
|
|
}
|
|
return os;
|
|
}
|
|
|
|
namespace utils
|
|
{
|
|
using Opm::UniformTableLinear;
|
|
}
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_UNIFORMTABLELINEAR_HEADER_INCLUDED
|