opm-core/tests/test_parallel_linearsolver.cpp
Markus Blatt 566aee7896 Added methods for computing global reductions.
We need to compute quite a few global reductions in the
Newton method of opm-autodiff. This commit adds the functionality
to compute several reductions combined using only one global
communication. Compiles and test succeeds with one or more process.
2015-01-21 16:19:35 +01:00

94 lines
3.1 KiB
C++

/*
Copyright 2014 Dr. Markus Blatt - HPC-Simulation-Software & Services
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#if HAVE_DYNAMIC_BOOST_TEST
#define BOOST_TEST_DYN_LINK
#endif
#define NVERBOSE // to suppress our messages when throwing
#define BOOST_TEST_MODULE OPM-ParallelIterativeSolverTest
#include <boost/test/unit_test.hpp>
// MPI header
#if HAVE_MPI
#include <mpi.h>
#include <dune/common/version.hh>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#else
#error "This file needs to compiled with MPI support!"
#endif
#include "DuneIstlTestHelpers.hpp"
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <memory>
#include <cstdlib>
#include <string>
void run_test(const Opm::parameter::ParameterGroup& param)
{
int N=100;
int start, end, istart, iend;
std::tie(start,istart,iend,end) = computeRegions(N);
Opm::ParallelISTLInformation comm(MPI_COMM_WORLD);
auto mat = create1DLaplacian(*comm.indexSet(), N, start, end, istart, iend);
std::vector<double> x(end-start), b(end-start);
createRandomVectors(comm, end-start, x, b, *mat);
std::vector<double> exact(x);
std::fill(x.begin(), x.end(), 0.0);
Opm::LinearSolverFactory ls(param);
boost::any anyComm(comm);
ls.solve(b.size(), mat->data.size(), &(mat->rowStart[0]),
&(mat->colIndex[0]), &(mat->data[0]), &(b[0]),
&(x[0]), anyComm);
}
#ifdef HAVE_DUNE_ISTL
BOOST_AUTO_TEST_CASE(CGAMGTest)
{
Opm::parameter::ParameterGroup param;
param.insertParameter(std::string("linsolver"), std::string("istl"));
param.insertParameter(std::string("linsolver_type"), std::string("1"));
param.insertParameter(std::string("linsolver_max_iterations"), std::string("200"));
run_test(param);
}
BOOST_AUTO_TEST_CASE(CGILUTest)
{
Opm::parameter::ParameterGroup param;
param.insertParameter(std::string("linsolver"), std::string("istl"));
param.insertParameter(std::string("linsolver_type"), std::string("0"));
param.insertParameter(std::string("linsolver_max_iterations"), std::string("200"));
run_test(param);
}
BOOST_AUTO_TEST_CASE(BiCGILUTest)
{
Opm::parameter::ParameterGroup param;
param.insertParameter(std::string("linsolver"), std::string("istl"));
param.insertParameter(std::string("linsolver_type"), std::string("2"));
param.insertParameter(std::string("linsolver_max_iterations"), std::string("200"));
run_test(param);
}
#endif