b90b803b80
Bhp is now initialized to bhp target for bhp-controlled wells. Mobilities and pvt properties are now calculated from well perforation pressure and injection specifications for injectors, producers still use cell properties as before.
635 lines
25 KiB
C++
635 lines
25 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <opm/core/pressure/CompressibleTpfa.hpp>
|
|
#include <opm/core/pressure/tpfa/cfs_tpfa_residual.h>
|
|
#include <opm/core/pressure/tpfa/compr_quant_general.h>
|
|
#include <opm/core/pressure/tpfa/compr_source.h>
|
|
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/linalg/sparse_sys.h>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/miscUtilities.hpp>
|
|
#include <opm/core/newwells.h>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/core/fluid/RockCompressibility.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <numeric>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
/// Construct solver.
|
|
/// \param[in] grid A 2d or 3d grid.
|
|
/// \param[in] props Rock and fluid properties.
|
|
/// \param[in] linsolver Linear solver to use.
|
|
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
|
|
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
|
|
/// \param[in] maxiter Maximum acceptable number of iterations.
|
|
/// \param[in] gravity Gravity vector. If non-null, the array should
|
|
/// have D elements.
|
|
/// \param[in] wells The wells argument. Will be used in solution,
|
|
/// is ignored if NULL.
|
|
/// Note: this class observes the well object, and
|
|
/// makes the assumption that the well topology
|
|
/// and completions does not change during the
|
|
/// run. However, controls (only) are allowed
|
|
/// to change.
|
|
CompressibleTpfa::CompressibleTpfa(const UnstructuredGrid& grid,
|
|
const BlackoilPropertiesInterface& props,
|
|
const RockCompressibility* rock_comp_props,
|
|
const LinearSolverInterface& linsolver,
|
|
const double residual_tol,
|
|
const double change_tol,
|
|
const int maxiter,
|
|
const double* gravity,
|
|
const struct Wells* wells)
|
|
: grid_(grid),
|
|
props_(props),
|
|
rock_comp_props_(rock_comp_props),
|
|
linsolver_(linsolver),
|
|
residual_tol_(residual_tol),
|
|
change_tol_(change_tol),
|
|
maxiter_(maxiter),
|
|
gravity_(gravity),
|
|
wells_(wells),
|
|
htrans_(grid.cell_facepos[ grid.number_of_cells ]),
|
|
trans_ (grid.number_of_faces),
|
|
allcells_(grid.number_of_cells),
|
|
singular_(false)
|
|
{
|
|
if (wells_ && (wells_->number_of_phases != props.numPhases())) {
|
|
THROW("Inconsistent number of phases specified (wells vs. props): "
|
|
<< wells_->number_of_phases << " != " << props.numPhases());
|
|
}
|
|
const int num_dofs = grid.number_of_cells + (wells ? wells->number_of_wells : 0);
|
|
pressure_increment_.resize(num_dofs);
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
|
|
tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
|
|
tpfa_trans_compute(gg, &htrans_[0], &trans_[0]);
|
|
// If we have rock compressibility, pore volumes are updated
|
|
// in the compute*() methods, otherwise they are constant and
|
|
// hence may be computed here.
|
|
if (rock_comp_props_ == NULL || !rock_comp_props_->isActive()) {
|
|
computePorevolume(grid_, props.porosity(), porevol_);
|
|
}
|
|
for (int c = 0; c < grid.number_of_cells; ++c) {
|
|
allcells_[c] = c;
|
|
}
|
|
cfs_tpfa_res_wells w;
|
|
w.W = const_cast<struct Wells*>(wells_);
|
|
w.data = NULL;
|
|
h_ = cfs_tpfa_res_construct(gg, &w, props.numPhases());
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Destructor.
|
|
CompressibleTpfa::~CompressibleTpfa()
|
|
{
|
|
cfs_tpfa_res_destroy(h_);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solve pressure equation, by Newton iterations.
|
|
void CompressibleTpfa::solve(const double dt,
|
|
BlackoilState& state,
|
|
WellState& well_state)
|
|
{
|
|
const int nc = grid_.number_of_cells;
|
|
const int nw = wells_->number_of_wells;
|
|
|
|
// Set up dynamic data.
|
|
computePerSolveDynamicData(dt, state, well_state);
|
|
computePerIterationDynamicData(dt, state, well_state);
|
|
|
|
// Assemble J and F.
|
|
assemble(dt, state, well_state);
|
|
|
|
double inc_norm = 0.0;
|
|
int iter = 0;
|
|
double res_norm = residualNorm();
|
|
std::cout << "\nIteration Residual Change in p\n"
|
|
<< std::setw(9) << iter
|
|
<< std::setw(18) << res_norm
|
|
<< std::setw(18) << '*' << std::endl;
|
|
while ((iter < maxiter_) && (res_norm > residual_tol_)) {
|
|
// Solve for increment in Newton method:
|
|
// incr = x_{n+1} - x_{n} = -J^{-1}F
|
|
// (J is Jacobian matrix, F is residual)
|
|
solveIncrement();
|
|
++iter;
|
|
|
|
// Update pressure vars with increment.
|
|
for (int c = 0; c < nc; ++c) {
|
|
state.pressure()[c] += pressure_increment_[c];
|
|
}
|
|
for (int w = 0; w < nw; ++w) {
|
|
well_state.bhp()[w] += pressure_increment_[nc + w];
|
|
}
|
|
|
|
// Stop iterating if increment is small.
|
|
inc_norm = incrementNorm();
|
|
if (inc_norm <= change_tol_) {
|
|
std::cout << std::setw(9) << iter
|
|
<< std::setw(18) << '*'
|
|
<< std::setw(18) << inc_norm << std::endl;
|
|
break;
|
|
}
|
|
|
|
// Set up dynamic data.
|
|
computePerIterationDynamicData(dt, state, well_state);
|
|
|
|
// Assemble J and F.
|
|
assemble(dt, state, well_state);
|
|
|
|
// Update residual norm.
|
|
res_norm = residualNorm();
|
|
|
|
std::cout << std::setw(9) << iter
|
|
<< std::setw(18) << res_norm
|
|
<< std::setw(18) << inc_norm << std::endl;
|
|
}
|
|
|
|
if ((iter == maxiter_) && (res_norm > residual_tol_) && (inc_norm > change_tol_)) {
|
|
THROW("CompressibleTpfa::solve() failed to converge in " << maxiter_ << " iterations.");
|
|
}
|
|
|
|
std::cout << "Solved pressure in " << iter << " iterations." << std::endl;
|
|
|
|
// Compute fluxes and face pressures.
|
|
computeResults(state, well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// @brief After solve(), was the resulting pressure singular.
|
|
/// Returns true if the pressure is singular in the following
|
|
/// sense: if everything is incompressible and there are no
|
|
/// pressure conditions, the absolute values of the pressure
|
|
/// solution are arbitrary. (But the differences in pressure
|
|
/// are significant.)
|
|
bool CompressibleTpfa::singularPressure() const
|
|
{
|
|
return singular_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Compute well potentials.
|
|
void CompressibleTpfa::computeWellPotentials(const BlackoilState& state)
|
|
{
|
|
if (wells_ == NULL) return;
|
|
|
|
const int nw = wells_->number_of_wells;
|
|
const int np = props_.numPhases();
|
|
const int nperf = wells_->well_connpos[nw];
|
|
const int dim = grid_.dimensions;
|
|
const double grav = gravity_ ? gravity_[dim - 1] : 0.0;
|
|
wellperf_gpot_.clear();
|
|
wellperf_gpot_.resize(np*nperf, 0.0);
|
|
if (grav == 0.0) {
|
|
return;
|
|
}
|
|
|
|
// Temporary storage for perforation A matrices and densities.
|
|
std::vector<double> A(np*np, 0.0);
|
|
std::vector<double> rho(np, 0.0);
|
|
|
|
// Main loop, iterate over all perforations,
|
|
// using the following formula (by phase):
|
|
// gpot(perf) = g*(perf_z - well_ref_z)*rho(perf)
|
|
// where the phase densities rho(perf) are taken to be
|
|
// the densities in the perforation cell.
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double ref_depth = wells_->depth_ref[w];
|
|
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w + 1]; ++j) {
|
|
const int cell = wells_->well_cells[j];
|
|
const double cell_depth = grid_.cell_centroids[dim * cell + dim - 1];
|
|
props_.matrix(1, &state.pressure()[cell], &state.surfacevol()[np*cell], &cell, &A[0], 0);
|
|
props_.density(1, &A[0], &rho[0]);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
wellperf_gpot_[np*j + phase] = rho[phase]*grav*(cell_depth - ref_depth);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Compute per-solve dynamic properties.
|
|
void CompressibleTpfa::computePerSolveDynamicData(const double /*dt*/,
|
|
const BlackoilState& state,
|
|
const WellState& /*well_state*/)
|
|
{
|
|
computeWellPotentials(state);
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Compute per-iteration dynamic properties.
|
|
void CompressibleTpfa::computePerIterationDynamicData(const double dt,
|
|
const BlackoilState& state,
|
|
const WellState& well_state)
|
|
{
|
|
// These are the variables that get computed by this function:
|
|
//
|
|
// std::vector<double> cell_A_;
|
|
// std::vector<double> cell_dA_;
|
|
// std::vector<double> cell_viscosity_;
|
|
// std::vector<double> cell_phasemob_;
|
|
// std::vector<double> cell_voldisc_;
|
|
// std::vector<double> face_A_;
|
|
// std::vector<double> face_phasemob_;
|
|
// std::vector<double> face_gravcap_;
|
|
// std::vector<double> wellperf_A_;
|
|
// std::vector<double> wellperf_phasemob_;
|
|
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
|
|
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
|
|
computeCellDynamicData(dt, state, well_state);
|
|
computeFaceDynamicData(dt, state, well_state);
|
|
computeWellDynamicData(dt, state, well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Compute per-iteration dynamic properties for cells.
|
|
void CompressibleTpfa::computeCellDynamicData(const double /*dt*/,
|
|
const BlackoilState& state,
|
|
const WellState& /*well_state*/)
|
|
{
|
|
// These are the variables that get computed by this function:
|
|
//
|
|
// std::vector<double> cell_A_;
|
|
// std::vector<double> cell_dA_;
|
|
// std::vector<double> cell_viscosity_;
|
|
// std::vector<double> cell_phasemob_;
|
|
// std::vector<double> cell_voldisc_;
|
|
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
|
|
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
|
|
const int nc = grid_.number_of_cells;
|
|
const int np = props_.numPhases();
|
|
const double* cell_p = &state.pressure()[0];
|
|
const double* cell_z = &state.surfacevol()[0];
|
|
const double* cell_s = &state.saturation()[0];
|
|
cell_A_.resize(nc*np*np);
|
|
cell_dA_.resize(nc*np*np);
|
|
props_.matrix(nc, cell_p, cell_z, &allcells_[0], &cell_A_[0], &cell_dA_[0]);
|
|
cell_viscosity_.resize(nc*np);
|
|
props_.viscosity(nc, cell_p, cell_z, &allcells_[0], &cell_viscosity_[0], 0);
|
|
cell_phasemob_.resize(nc*np);
|
|
props_.relperm(nc, cell_s, &allcells_[0], &cell_phasemob_[0], 0);
|
|
std::transform(cell_phasemob_.begin(), cell_phasemob_.end(),
|
|
cell_viscosity_.begin(),
|
|
cell_phasemob_.begin(),
|
|
std::divides<double>());
|
|
// Volume discrepancy: we have that
|
|
// z = Au, voldiscr = sum(u) - 1,
|
|
// but I am not sure it is actually needed.
|
|
// Use zero for now.
|
|
// TODO: Check this!
|
|
cell_voldisc_.clear();
|
|
cell_voldisc_.resize(nc, 0.0);
|
|
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
|
|
rock_comp_.resize(nc);
|
|
for (int cell = 0; cell < nc; ++cell) {
|
|
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Compute per-iteration dynamic properties for faces.
|
|
void CompressibleTpfa::computeFaceDynamicData(const double /*dt*/,
|
|
const BlackoilState& state,
|
|
const WellState& /*well_state*/)
|
|
{
|
|
// These are the variables that get computed by this function:
|
|
//
|
|
// std::vector<double> face_A_;
|
|
// std::vector<double> face_phasemob_;
|
|
// std::vector<double> face_gravcap_;
|
|
const int np = props_.numPhases();
|
|
const int nf = grid_.number_of_faces;
|
|
const int dim = grid_.dimensions;
|
|
const double grav = gravity_ ? gravity_[dim - 1] : 0.0;
|
|
std::vector<double> gravcontrib[2];
|
|
std::vector<double> pot[2];
|
|
gravcontrib[0].resize(np);
|
|
gravcontrib[1].resize(np);
|
|
pot[0].resize(np);
|
|
pot[1].resize(np);
|
|
face_A_.resize(nf*np*np);
|
|
face_phasemob_.resize(nf*np);
|
|
face_gravcap_.resize(nf*np);
|
|
for (int face = 0; face < nf; ++face) {
|
|
// Obtain properties from both sides of the face.
|
|
const double face_depth = grid_.face_centroids[face*dim + dim - 1];
|
|
const int* c = &grid_.face_cells[2*face];
|
|
|
|
// Get pressures and compute gravity contributions,
|
|
// to decide upwind directions.
|
|
double c_press[2];
|
|
for (int j = 0; j < 2; ++j) {
|
|
if (c[j] >= 0) {
|
|
// Pressure
|
|
c_press[j] = state.pressure()[c[j]];
|
|
// Gravity contribution, gravcontrib = rho*(face_z - cell_z) [per phase].
|
|
if (grav != 0.0) {
|
|
const double depth_diff = face_depth - grid_.cell_centroids[c[j]*dim + dim - 1];
|
|
props_.density(1, &cell_A_[np*np*c[j]], &gravcontrib[j][0]);
|
|
for (int p = 0; p < np; ++p) {
|
|
gravcontrib[j][p] *= depth_diff*grav;
|
|
}
|
|
} else {
|
|
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
|
|
}
|
|
} else {
|
|
// Pressures
|
|
c_press[j] = state.facepressure()[face];
|
|
// Gravity contribution.
|
|
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
|
|
}
|
|
}
|
|
|
|
// Gravity contribution:
|
|
// gravcapf = rho_1*g*(z_12 - z_1) - rho_2*g*(z_12 - z_2)
|
|
// where _1 and _2 refers to two neigbour cells, z is the
|
|
// z coordinate of the centroid, and z_12 is the face centroid.
|
|
// Also compute the potentials.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
face_gravcap_[np*face + phase] = gravcontrib[0][phase] - gravcontrib[1][phase];
|
|
pot[0][phase] = c_press[0] + face_gravcap_[np*face + phase];
|
|
pot[1][phase] = c_press[1];
|
|
}
|
|
|
|
// Now we can easily find the upwind direction for every phase,
|
|
// we can also tell which boundary faces are inflow bdys.
|
|
|
|
// Get upwind mobilities by phase.
|
|
// Get upwind A matrix rows by phase.
|
|
// NOTE:
|
|
// We should be careful to upwind the R factors,
|
|
// the B factors are not that vital.
|
|
// z = Au = RB^{-1}u,
|
|
// where (this example is for gas-oil)
|
|
// R = [1 RgL; RoV 1], B = [BL 0 ; 0 BV]
|
|
// (RgL is gas in Liquid phase, RoV is oil in Vapour phase.)
|
|
// A = [1/BL RgL/BV; RoV/BL 1/BV]
|
|
// This presents us with a dilemma, as V factors should be
|
|
// upwinded according to V phase flow, same for L. What then
|
|
// about the RgL/BV and RoV/BL numbers?
|
|
// We give priority to R, and therefore upwind the rows of A
|
|
// by phase (but remember, Fortran matrix ordering).
|
|
// This prompts the question if we should split the matrix()
|
|
// property method into formation volume and R-factor methods.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int upwindc = -1;
|
|
if (c[0] >=0 && c[1] >= 0) {
|
|
upwindc = (pot[0] < pot[1]) ? c[1] : c[0];
|
|
} else {
|
|
upwindc = (c[0] >= 0) ? c[0] : c[1];
|
|
}
|
|
face_phasemob_[np*face + phase] = cell_phasemob_[np*upwindc + phase];
|
|
for (int p2 = 0; p2 < np; ++p2) {
|
|
// Recall: column-major ordering.
|
|
face_A_[np*np*face + phase + np*p2]
|
|
= cell_A_[np*np*upwindc + phase + np*p2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Compute per-iteration dynamic properties for wells.
|
|
void CompressibleTpfa::computeWellDynamicData(const double /*dt*/,
|
|
const BlackoilState& /*state*/,
|
|
const WellState& well_state)
|
|
{
|
|
// These are the variables that get computed by this function:
|
|
//
|
|
// std::vector<double> wellperf_A_;
|
|
// std::vector<double> wellperf_phasemob_;
|
|
const int np = props_.numPhases();
|
|
const int nw = wells_->number_of_wells;
|
|
const int nperf = wells_->well_connpos[nw];
|
|
wellperf_A_.resize(nperf*np*np);
|
|
wellperf_phasemob_.resize(nperf*np);
|
|
// The A matrix is set equal to the perforation grid cells'
|
|
// matrix for producers, computed from bhp and injection
|
|
// component fractions from
|
|
// The mobilities are set equal to the perforation grid cells'
|
|
// mobilities for producers.
|
|
std::vector<double> mu(np);
|
|
for (int w = 0; w < nw; ++w) {
|
|
bool producer = (wells_->type[w] == PRODUCER);
|
|
const double* comp_frac = &wells_->comp_frac[np*w];
|
|
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w+1]; ++j) {
|
|
const int c = wells_->well_cells[j];
|
|
double* wpA = &wellperf_A_[np*np*j];
|
|
double* wpM = &wellperf_phasemob_[np*j];
|
|
if (producer) {
|
|
const double* cA = &cell_A_[np*np*c];
|
|
std::copy(cA, cA + np*np, wpA);
|
|
const double* cM = &cell_phasemob_[np*c];
|
|
std::copy(cM, cM + np, wpM);
|
|
} else {
|
|
const double bhp = well_state.bhp()[w];
|
|
double perf_p = bhp;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
perf_p += wellperf_gpot_[np*j + phase]*comp_frac[phase];
|
|
}
|
|
// Hack warning: comp_frac is used as a component
|
|
// surface-volume variable in calls to matrix() and
|
|
// viscosity(), but as a saturation in the call to
|
|
// relperm(). This is probably ok as long as injectors
|
|
// only inject pure fluids.
|
|
props_.matrix(1, &perf_p, comp_frac, &c, wpA, NULL);
|
|
props_.viscosity(1, &perf_p, comp_frac, &c, &mu[0], NULL);
|
|
ASSERT(std::fabs(std::accumulate(comp_frac, comp_frac + np, 0.0) - 1.0) < 1e-6);
|
|
props_.relperm (1, comp_frac, &c, wpM , NULL);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
wpM[phase] /= mu[phase];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Compute the residual and Jacobian.
|
|
void CompressibleTpfa::assemble(const double dt,
|
|
const BlackoilState& state,
|
|
const WellState& well_state)
|
|
{
|
|
const double* cell_press = &state.pressure()[0];
|
|
const double* well_bhp = well_state.bhp().empty() ? NULL : &well_state.bhp()[0];
|
|
const double* z = &state.surfacevol()[0];
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
|
|
CompletionData completion_data;
|
|
completion_data.gpot = &wellperf_gpot_[0];
|
|
completion_data.A = &wellperf_A_[0];
|
|
completion_data.phasemob = &wellperf_phasemob_[0];
|
|
cfs_tpfa_res_wells wells_tmp;
|
|
wells_tmp.W = const_cast<Wells*>(wells_);
|
|
wells_tmp.data = &completion_data;
|
|
cfs_tpfa_res_forces forces;
|
|
forces.wells = &wells_tmp;
|
|
forces.src = NULL; // Check if it is legal to leave it as NULL.
|
|
compr_quantities_gen cq;
|
|
cq.nphases = props_.numPhases();
|
|
cq.Ac = &cell_A_[0];
|
|
cq.dAc = &cell_dA_[0];
|
|
cq.Af = &face_A_[0];
|
|
cq.phasemobf = &face_phasemob_[0];
|
|
cq.voldiscr = &cell_voldisc_[0];
|
|
int was_adjusted = 0;
|
|
if (! (rock_comp_props_ && rock_comp_props_->isActive())) {
|
|
was_adjusted =
|
|
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
|
|
&face_gravcap_[0], cell_press, well_bhp,
|
|
&porevol_[0], h_);
|
|
} else {
|
|
was_adjusted =
|
|
cfs_tpfa_res_comprock_assemble(gg, dt, &forces, z, &cq, &trans_[0],
|
|
&face_gravcap_[0], cell_press, well_bhp,
|
|
&porevol_[0], &initial_porevol_[0],
|
|
&rock_comp_[0], h_);
|
|
}
|
|
singular_ = (was_adjusted == 1);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Computes pressure_increment_.
|
|
void CompressibleTpfa::solveIncrement()
|
|
{
|
|
// Increment is equal to -J^{-1}F
|
|
linsolver_.solve(h_->J, h_->F, &pressure_increment_[0]);
|
|
std::transform(pressure_increment_.begin(), pressure_increment_.end(),
|
|
pressure_increment_.begin(), std::negate<double>());
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
template <class FI>
|
|
double infnorm(FI beg, FI end)
|
|
{
|
|
double norm = 0.0;
|
|
for (; beg != end; ++beg) {
|
|
norm = std::max(norm, std::fabs(*beg));
|
|
}
|
|
return norm;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
/// Computes the inf-norm of the residual.
|
|
double CompressibleTpfa::residualNorm() const
|
|
{
|
|
const int ndof = pressure_increment_.size();
|
|
return infnorm(h_->F, h_->F + ndof);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Computes the inf-norm of pressure_increment_.
|
|
double CompressibleTpfa::incrementNorm() const
|
|
{
|
|
return infnorm(pressure_increment_.begin(), pressure_increment_.end());
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Compute the output.
|
|
void CompressibleTpfa::computeResults(BlackoilState& state,
|
|
WellState& well_state) const
|
|
{
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
|
|
CompletionData completion_data;
|
|
completion_data.gpot = const_cast<double*>(&wellperf_gpot_[0]);
|
|
completion_data.A = const_cast<double*>(&wellperf_A_[0]);
|
|
completion_data.phasemob = const_cast<double*>(&wellperf_phasemob_[0]);
|
|
cfs_tpfa_res_wells wells_tmp;
|
|
wells_tmp.W = const_cast<Wells*>(wells_);
|
|
wells_tmp.data = &completion_data;
|
|
cfs_tpfa_res_forces forces;
|
|
forces.wells = &wells_tmp;
|
|
forces.src = NULL;
|
|
|
|
cfs_tpfa_res_flux(gg,
|
|
&forces,
|
|
props_.numPhases(),
|
|
&trans_[0],
|
|
&cell_phasemob_[0],
|
|
&face_phasemob_[0],
|
|
&face_gravcap_[0],
|
|
&state.pressure()[0],
|
|
&well_state.bhp()[0],
|
|
&state.faceflux()[0],
|
|
&well_state.perfRates()[0]);
|
|
cfs_tpfa_res_fpress(gg,
|
|
props_.numPhases(),
|
|
&htrans_[0],
|
|
&face_phasemob_[0],
|
|
&face_gravcap_[0],
|
|
h_,
|
|
&state.pressure()[0],
|
|
&state.faceflux()[0],
|
|
&state.facepressure()[0]);
|
|
}
|
|
|
|
} // namespace Opm
|