opm-core/opm/core/utility/SplineCommon_.hpp

924 lines
28 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2010-2013 by Andreas Lauser *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
* \copydoc Opm::SplineCommon_
*/
#ifndef OPM_SPLINE_COMMON__HH
#define OPM_SPLINE_COMMON__HH
#include <opm/core/utility/PolynomialUtils.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Exceptions.hpp>
#include <tuple>
#include <algorithm>
#include <iostream>
#include <cassert>
namespace Opm
{
enum SplineType {
FullSpline,
NaturalSpline,
PeriodicSpline,
MonotonicSpline
};
/*!
* \brief The common code for all 3rd order polynomial splines.
*/
template<class ScalarT, class ImplementationT>
class SplineCommon_
{
typedef ScalarT Scalar;
typedef ImplementationT Implementation;
Implementation &asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation &asImp_() const
{ return *static_cast<const Implementation*>(this); }
public:
/*!
* \brief Return true iff the given x is in range [x1, xn].
*/
bool applies(Scalar x) const
{
return x_(0) <= x && x <= x_(numSamples_() - 1);
}
/*!
* \brief Return the x value of the leftmost sampling point.
*/
Scalar xMin() const
{ return x_(0); }
/*!
* \brief Return the x value of the rightmost sampling point.
*/
Scalar xMax() const
{ return x_(numSamples_() - 1); }
/*!
* \brief Prints k tuples of the format (x, y, dx/dy, isMonotonic)
* to stdout.
*
* If the spline does not apply for parts of [x0, x1] it is
* extrapolated using a straight line. The result can be inspected
* using the following commands:
*
----------- snip -----------
./yourProgramm > spline.csv
gnuplot
gnuplot> plot "spline.csv" using 1:2 w l ti "Curve", \
"spline.csv" using 1:3 w l ti "Derivative", \
"spline.csv" using 1:4 w p ti "Monotonic"
----------- snap -----------
*/
void printCSV(Scalar xi0, Scalar xi1, int k, std::ostream &os = std::cout) const
{
Scalar x0 = std::min(xi0, xi1);
Scalar x1 = std::max(xi0, xi1);
const int n = numSamples_() - 1;
for (int i = 0; i <= k; ++i) {
double x = i*(x1 - x0)/k + x0;
double x_p1 = x + (x1 - x0)/k;
double y;
double dy_dx;
double mono = 1;
if (!applies(x)) {
if (x < x_(0)) {
dy_dx = evalDerivative(x_(0));
y = (x - x_(0))*dy_dx + y_(0);
mono = (dy_dx>0)?1:-1;
}
else if (x > x_(n)) {
dy_dx = evalDerivative(x_(n));
y = (x - x_(n))*dy_dx + y_(n);
mono = (dy_dx>0)?1:-1;
}
else {
OPM_THROW(std::runtime_error,
"The sampling points given to a spline must be sorted by their x value!");
}
}
else {
y = eval(x);
dy_dx = evalDerivative(x);
mono = monotonic(std::max<Scalar>(x_(0), x), std::min<Scalar>(x_(n), x_p1));
}
os << x << " " << y << " " << dy_dx << " " << mono << "\n";
}
}
/*!
* \brief Evaluate the spline at a given position.
*
* \param x The value on the abscissa where the spline ought to be
* evaluated
* \param extrapolate If this parameter is set to true, the spline
* will be extended beyond its range by
* straight lines, if false calling extrapolate
* for \f$ x \not [x_{min}, x_{max}]\f$ will
* cause a failed assertation.
*/
Scalar eval(Scalar x, bool extrapolate=false) const
{
assert(extrapolate || applies(x));
// handle extrapolation
if (extrapolate) {
if (x < xMin()) {
Scalar m = evalDerivative(xMin(), /*segmentIdx=*/0);
Scalar y0 = y_(0);
return y0 + m*(x - xMin());
}
else if (x > xMax()) {
Scalar m = evalDerivative(xMax(), /*segmentIdx=*/numSamples_()-2);
Scalar y0 = y_(numSamples_() - 1);
return y0 + m*(x - xMax());
}
}
return eval_(x, segmentIdx_(x));
}
/*!
* \brief Evaluate the spline's derivative at a given position.
*
* \param x The value on the abscissa where the spline's
* derivative ought to be evaluated
*
* \param extrapolate If this parameter is set to true, the spline
* will be extended beyond its range by
* straight lines, if false calling extrapolate
* for \f$ x \not [x_{min}, x_{max}]\f$ will
* cause a failed assertation.
*/
Scalar evalDerivative(Scalar x, bool extrapolate=false) const
{
assert(extrapolate || applies(x));
if (extrapolate) {
if (x < xMin())
evalDerivative_(xMin(), 0);
else if (x > xMax())
evalDerivative_(xMax(), numSamples_() - 2);
}
return evalDerivative_(x, segmentIdx_(x));
}
/*!
* \brief Evaluate the spline's second derivative at a given position.
*
* \param x The value on the abscissa where the spline's
* derivative ought to be evaluated
*
* \param extrapolate If this parameter is set to true, the spline
* will be extended beyond its range by
* straight lines, if false calling extrapolate
* for \f$ x \not [x_{min}, x_{max}]\f$ will
* cause a failed assertation.
*/
Scalar evalSecondDerivative(Scalar x, bool extrapolate=false) const
{
assert(extrapolate || applies(x));
if (extrapolate)
return 0.0;
return evalDerivative2_(x, segmentIdx_(x));
}
/*!
* \brief Find the intersections of the spline with a cubic
* polynomial in the whole intervall, throws
* Opm::MathError exception if there is more or less than
* one solution.
*/
Scalar intersect(Scalar a, Scalar b, Scalar c, Scalar d) const
{
return intersectIntervall(xMin(), xMax(), a, b, c, d);
}
/*!
* \brief Find the intersections of the spline with a cubic
* polynomial in a sub-intervall of the spline, throws
* Opm::MathError exception if there is more or less than
* one solution.
*/
Scalar intersectInterval(Scalar x0, Scalar x1,
Scalar a, Scalar b, Scalar c, Scalar d) const
{
assert(applies(x0) && applies(x1));
Scalar tmpSol[3];
int nSol = 0;
int iFirst = segmentIdx_(x0);
int iLast = segmentIdx_(x1);
for (int i = iFirst; i <= iLast; ++i)
{
nSol += intersectSegment_(tmpSol, i, a, b, c, d, x0, x1);
if (nSol > 1) {
OPM_THROW(std::runtime_error,
"Spline has more than one intersection"); //<<a<<"x^3 + "<<b<"x^2 + "<<c<"x + "<<d);
}
}
if (nSol != 1)
OPM_THROW(std::runtime_error,
"Spline has no intersection"); //<<a<"x^3 + " <<b<"x^2 + "<<c<"x + "<<d<<"!");
return tmpSol[0];
}
/*!
* \brief Returns 1 if the spline is monotonically increasing, -1
* if the spline is mononously decreasing and 0 if the
* spline is not monotonous in the interval (x0, x1).
*
* In the corner case that the spline is constant within the given
* interval, this method returns 3.
*/
int monotonic(Scalar x0, Scalar x1) const
{
assert(applies(x0));
assert(applies(x1));
assert(x0 != x1);
// make sure that x0 is smaller than x1
if (x0 > x1)
std::swap(x0, x1);
assert(x0 < x1);
int i = segmentIdx_(x0);
if (x_(i + 1) < x1)
// interval is fully contained within a single spline
// segment
return monotonic_(i, x0, x1);
int iEnd = segmentIdx_(x1);
// make sure that the segments which are completly in the
// interval [x0, x1] all exhibit the same monotonicity.
int r = monotonic_(i, x0, x_(i + 1));
for (++i; i < iEnd - 1; ++i) {
int nextR = monotonic_(i, x_(i), x_(i + 1));
if (nextR == 3) // spline is constant
continue;
if (r == 3)
r = nextR;
if (r != nextR)
return 0;
}
// check for the last segment
if (x_(iEnd) < x1) {
int lastR = monotonic_(iEnd, x_(iEnd), x1);
if (lastR != 3 && r != 3 && r != lastR)
return 0;
}
return r;
}
/*!
* \brief Same as monotonic(x0, x1), but with the entire range of the
* spline as interval.
*/
int monotonic() const
{ return monotonic(xMin(), xMax()); }
protected:
// this is an internal class, so everything is protected!
SplineCommon_()
{ }
/*!
* \brief Set the sampling point vectors.
*
* This takes care that the order of the x-values is ascending,
* although the input must be ordered already!
*/
template <class DestVector, class SourceVector>
void assignSamplingPoints_(DestVector &destX,
DestVector &destY,
const SourceVector &srcX,
const SourceVector &srcY,
int numSamples)
{
assert(numSamples >= 2);
// copy sample points, make sure that the first x value is
// smaller than the last one
for (int i = 0; i < numSamples; ++i) {
int idx = i;
if (srcX[0] > srcX[numSamples - 1])
idx = numSamples - i - 1;
destX[i] = srcX[idx];
destY[i] = srcY[idx];
}
}
template <class DestVector, class ListIterator>
void assignFromArrayList_(DestVector &destX,
DestVector &destY,
const ListIterator &srcBegin,
const ListIterator &srcEnd,
int numSamples)
{
assert(numSamples >= 2);
// find out wether the x values are in reverse order
ListIterator it = srcBegin;
++it;
bool reverse = false;
if ((*srcBegin)[0] > (*it)[0])
reverse = true;
--it;
// loop over all sampling points
for (int i = 0; it != srcEnd; ++i, ++it) {
int idx = i;
if (reverse)
idx = numSamples - i - 1;
destX[i] = (*it)[0];
destY[i] = (*it)[1];
}
}
/*!
* \brief Set the sampling points.
*
* Here we assume that the elements of the source vector have an
* [] operator where v[0] is the x value and v[1] is the y value
* if the sampling point.
*/
template <class DestVector, class ListIterator>
void assignFromTupleList_(DestVector &destX,
DestVector &destY,
ListIterator srcBegin,
ListIterator srcEnd,
int numSamples)
{
assert(numSamples >= 2);
// copy sample points, make sure that the first x value is
// smaller than the last one
// find out wether the x values are in reverse order
ListIterator it = srcBegin;
++it;
bool reverse = false;
if (std::get<0>(*srcBegin) > std::get<0>(*it))
reverse = true;
--it;
// loop over all sampling points
for (int i = 0; it != srcEnd; ++i, ++it) {
int idx = i;
if (reverse)
idx = numSamples - i - 1;
destX[i] = std::get<0>(*it);
destY[i] = std::get<1>(*it);
}
}
/*!
* \brief Make the linear system of equations Mx = d which results
* in the moments of the full spline.
*/
template <class Vector, class Matrix>
void makeFullSystem_(Matrix &M, Vector &d, Scalar m0, Scalar m1)
{
makeNaturalSystem_(M, d);
int n = numSamples_() - 1;
// first row
M[0][1] = 1;
d[0] = 6/h_(1) * ( (y_(1) - y_(0))/h_(1) - m0);
// last row
M[n][n - 1] = 1;
// right hand side
d[n] =
6/h_(n)
*
(m1 - (y_(n) - y_(n - 1))/h_(n));
}
/*!
* \brief Make the linear system of equations Mx = d which results
* in the moments of the natural spline.
*/
template <class Vector, class Matrix>
void makeNaturalSystem_(Matrix &M, Vector &d)
{
M = 0.0;
// See: J. Stoer: "Numerische Mathematik 1", 9th edition,
// Springer, 2005, p. 111
const int n = asImp_().numSamples() - 1;
// second to next to last rows
for (int i = 1; i < n; ++i) {
Scalar lambda_i = h_(i + 1) / (h_(i) + h_(i + 1));
Scalar mu_i = 1 - lambda_i;
Scalar d_i =
6 / (h_(i) + h_(i + 1))
*
( (y_(i + 1) - y_(i))/h_(i + 1) - (y_(i) - y_(i - 1))/h_(i));
M[i][i-1] = mu_i;
M[i][i] = 2;
M[i][i + 1] = lambda_i;
d[i] = d_i;
};
// See Stroer, equation (2.5.2.7)
Scalar lambda_0 = 0;
Scalar d_0 = 0;
Scalar mu_n = 0;
Scalar d_n = 0;
// first row
M[0][0] = 2;
M[0][1] = lambda_0;
d[0] = d_0;
// last row
M[n][n-1] = mu_n;
M[n][n] = 2;
d[n] = d_n;
}
/*!
* \brief Make the linear system of equations Mx = d which results
* in the moments of the periodic spline.
*/
template <class Matrix, class Vector>
void makePeriodicSystem_(Matrix &M, Vector &d)
{
M = 0.0;
// See: J. Stoer: "Numerische Mathematik 1", 9th edition,
// Springer, 2005, p. 111
const int n = asImp_().numSamples() - 1;
assert(M.rows() == n);
// second to next to last rows
for (int i = 2; i < n; ++i) {
Scalar lambda_i = h_(i + 1) / (h_(i) + h_(i + 1));
Scalar mu_i = 1 - lambda_i;
Scalar d_i =
6 / (h_(i) + h_(i + 1))
*
( (y_(i + 1) - y_(i))/h_(i + 1) - (y_(i) - y_(i - 1))/h_(i));
M[i-1][i-2] = mu_i;
M[i-1][i-1] = 2;
M[i-1][i] = lambda_i;
d[i-1] = d_i;
};
Scalar lambda_n = h_(1) / (h_(n) + h_(1));
Scalar lambda_1 = h_(2) / (h_(1) + h_(2));;
Scalar mu_1 = 1 - lambda_1;
Scalar mu_n = 1 - lambda_n;
Scalar d_1 =
6 / (h_(1) + h_(2))
*
( (y_(2) - y_(1))/h_(2) - (y_(1) - y_(0))/h_(1));
Scalar d_n =
6 / (h_(n) + h_(1))
*
( (y_(1) - y_(n))/h_(1) - (y_(n) - y_(n-1))/h_(n));
// first row
M[0][0] = 2;
M[0][1] = lambda_1;
M[0][n-1] = mu_1;
d[0] = d_1;
// last row
M[n-1][0] = lambda_n;
M[n-1][n-2] = mu_n;
M[n-1][n-1] = 2;
d[n-1] = d_n;
}
/*!
* \brief Create a monotonic spline from the already set sampling points.
*
* This code is inspired by opm-core's "MonotCubicInterpolator"
* class and also uses the approach by Fritsch and Carlson, see
*
* http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
*/
template <class Vector>
void makeMonotonicSpline_(Vector &slopes)
{
auto n = asImp_().numSamples();
std::vector<Scalar> delta(n);
for (int k = 0; k < n - 1; ++k) {
delta[k] = (y_(k + 1) - y_(k))/(x_(k + 1) - x_(k));
}
delta[n - 1] = delta[n - 2];
// calculate the "raw" slopes at the sample points
for (int k = 0; k < n - 1; ++k)
slopes[k] = (delta[k] + delta[k + 1])/2;
slopes[n - 1] = delta[n - 2];
// post-process the "raw" slopes at the sample points
for (int k = 0; k < n - 1; ++k) {
if (std::abs(delta[k]) < 1e-20) {
// make the spline flat if the inputs are equal
slopes[k] = 0;
slopes[k + 1] = 0;
++ k;
continue;
}
Scalar alpha = slopes[k] / delta[k];
Scalar beta = slopes[k + 1] / delta[k];
if (k > 0) {
// check if the inputs are not montonous. if yes, make
// x[k] a local extremum.
if (delta[k]*delta[k - 1] < 0) {
slopes[k] = 0;
continue;
}
}
// limit (alpha, beta) to a circle of radius 3
if (alpha*alpha + beta*beta > 3*3) {
Scalar tau = 3.0/std::sqrt(alpha*alpha + beta*beta);
slopes[k] = tau*alpha*delta[k];
slopes[k + 1] = tau*beta*delta[k];
}
}
}
/*!
* \brief Convert the moments at the sample points to slopes.
*
* This requires to use cubic Hermite interpolation, but it is
* required because for monotonic splines the second derivative is
* not continuous.
*/
template <class MomentsVector, class SlopeVector>
void setSlopesFromMoments_(SlopeVector &slopes, const MomentsVector &moments)
{
int n = asImp_().numSamples();
// evaluate slope at the rightmost point.
// See: J. Stoer: "Numerische Mathematik 1", 9th edition,
// Springer, 2005, p. 109
Scalar mRight;
{
Scalar h = this->h_(n - 1);
Scalar x = h;
//Scalar x_1 = 0;
Scalar A =
(y_(n - 1) - y_(n - 2))/h
-
h/6*(moments[n-1] - moments[n - 2]);
mRight =
//- moments[n - 2] * x_1*x_1 / (2 * h)
//+
moments[n - 1] * x*x / (2 * h)
+
A;
}
// evaluate the slope for the first n-1 sample points
for (int i = 0; i < n - 1; ++ i) {
// See: J. Stoer: "Numerische Mathematik 1", 9th edition,
// Springer, 2005, p. 109
Scalar h_i = this->h_(i + 1);
//Scalar x_i = 0;
Scalar x_i1 = h_i;
Scalar A_i =
(y_(i+1) - y_(i))/h_i
-
h_i/6*(moments[i+1] - moments[i]);
slopes[i] =
- moments[i] * x_i1*x_i1 / (2 * h_i)
+
//moments[i + 1] * x_i*x_i / (2 * h_i)
//+
A_i;
}
slopes[n - 1] = mRight;
}
// evaluate the spline at a given the position and given the
// segment index
Scalar eval_(Scalar x, int i) const
{
// See http://en.wikipedia.org/wiki/Cubic_Hermite_spline
Scalar delta = h_(i + 1);
Scalar t = (x - x_(i))/delta;
return
h00_(t) * y_(i)
+ h10_(t) * slope_(i)*delta
+ h01_(t) * y_(i + 1)
+ h11_(t) * slope_(i + 1)*delta;
}
// evaluate the derivative of a spline given the actual position
// and the segment index
Scalar evalDerivative_(Scalar x, int i) const
{
// See http://en.wikipedia.org/wiki/Cubic_Hermite_spline
Scalar delta = h_(i + 1);
Scalar t = (x - x_(i))/delta;
Scalar alpha = 1 / delta;
return
alpha *
(h00_prime_(t) * y_(i)
+ h10_prime_(t) * slope_(i)*delta
+ h01_prime_(t) * y_(i + 1)
+ h11_prime_(t) * slope_(i + 1)*delta);
}
// evaluate the second derivative of a spline given the actual
// position and the segment index
Scalar evalDerivative2_(Scalar x, int i) const
{
// See http://en.wikipedia.org/wiki/Cubic_Hermite_spline
Scalar delta = h_(i + 1);
Scalar t = (x - x_(i))/delta;
Scalar alpha = 1 / delta;
return
alpha
*(h00_prime2_(t) * y_(i)
+ h10_prime2_(t) * slope_(i)*delta
+ h01_prime2_(t) * y_(i + 1)
+ h11_prime2_(t) * slope_(i + 1)*delta);
}
// evaluate the third derivative of a spline given the actual
// position and the segment index
Scalar evalDerivative3_(Scalar x, int i) const
{
// See http://en.wikipedia.org/wiki/Cubic_Hermite_spline
Scalar t = (x - x_(i))/h_(i + 1);
Scalar alpha = 1 / h_(i + 1);
return
alpha
*(h00_prime3_(t)*y_(i)
+ h10_prime3_(t)*slope_(i)
+ h01_prime3_(t)*y_(i + 1)
+ h11_prime3_(t)*slope_(i + 1));
}
// hermite basis functions
Scalar h00_(Scalar t) const
{ return (2*t - 3)*t*t + 1; }
Scalar h10_(Scalar t) const
{ return ((t - 2)*t + 1)*t; }
Scalar h01_(Scalar t) const
{ return (-2*t + 3)*t*t; }
Scalar h11_(Scalar t) const
{ return (t - 1)*t*t; }
// first derivative of the hermite basis functions
Scalar h00_prime_(Scalar t) const
{ return (3*2*t - 2*3)*t; }
Scalar h10_prime_(Scalar t) const
{ return (3*t - 2*2)*t + 1; }
Scalar h01_prime_(Scalar t) const
{ return (-3*2*t + 2*3)*t; }
Scalar h11_prime_(Scalar t) const
{ return (3*t - 2)*t; }
// second derivative of the hermite basis functions
Scalar h00_prime2_(Scalar t) const
{ return 2*3*2*t - 2*3; }
Scalar h10_prime2_(Scalar t) const
{ return 2*3*t - 2*2; }
Scalar h01_prime2_(Scalar t) const
{ return -2*3*2*t + 2*3; }
Scalar h11_prime2_(Scalar t) const
{ return 2*3*t - 2; }
// third derivative of the hermite basis functions
Scalar h00_prime3_(Scalar t) const
{ return 2*3*2; }
Scalar h10_prime3_(Scalar t) const
{ return 2*3; }
Scalar h01_prime3_(Scalar t) const
{ return -2*3*2; }
Scalar h11_prime3_(Scalar t) const
{ return 2*3; }
// returns the monotonicality of an interval of a spline segment
//
// The return value have the following meaning:
//
// 3: spline is constant within interval [x0, x1]
// 1: spline is monotonously increasing in the specified interval
// 0: spline is not monotonic (or constant) in the specified interval
// -1: spline is monotonously decreasing in the specified interval
int monotonic_(int i, Scalar x0, Scalar x1) const
{
// shift the interval so that it is consistent with the
// definitions by Stoer
x0 = x0 - x_(i);
x1 = x1 - x_(i);
Scalar a = a_(i);
Scalar b = b_(i);
Scalar c = c_(i);
if (std::abs(a) < 1e-20 && std::abs(b) < 1e-20 && std::abs(c) < 1e-20)
return 3; // constant in interval
Scalar disc = 4*b*b - 12*a*c;
if (disc < 0) {
// discriminant is smaller than 0, i.e. the segment does
// not exhibit any extrema.
return (x0*(x0*3*a + 2*b) + c > 0) ? 1 : -1;
}
disc = std::sqrt(disc);
Scalar xE1 = (-2*b + disc)/(6*a);
Scalar xE2 = (-2*b - disc)/(6*a);
if (disc == 0) {
// saddle point -> no extrema
if (xE1 == x0)
// make sure that we're not picking the saddle point
// to determine whether we're monotonically increasing
// or decreasing
x0 = x1;
return (x0*(x0*3*a + 2*b) + c > 0) ? 1 : -1;
};
if ((x0 < xE1 && xE1 < x1) ||
(x0 < xE2 && xE2 < x1))
{
// there is an extremum in the range (x0, x1)
return 0;
}
// no extremum in range (x0, x1)
x0 = (x0 + x1)/2; // pick point in the middle of the interval
// to avoid extrema on the boundaries
return (x0*(x0*3*a + 2*b) + c > 0) ? 1 : -1;
}
/*!
* \brief Find all the intersections of a segment of the spline
* with a cubic polynomial within a specified interval.
*/
int intersectSegment_(Scalar *sol,
int segIdx,
Scalar a, Scalar b, Scalar c, Scalar d,
Scalar x0 = -1e100, Scalar x1 = 1e100) const
{
int n = Opm::invertCubicPolynomial(sol,
a_(segIdx) - a,
b_(segIdx) - b,
c_(segIdx) - c,
d_(segIdx) - d);
x0 = std::max(x_(segIdx), x0);
x1 = std::max(x_(segIdx+1), x1);
// filter the intersections outside of the specified intervall
int k = 0;
for (int j = 0; j < n; ++j) {
sol[j] += x_(segIdx); // add the offset of the intervall. For details see Stoer
if (x0 <= sol[j] && sol[j] <= x1) {
sol[k] = sol[j];
++k;
}
}
return k;
}
// find the segment index for a given x coordinate
int segmentIdx_(Scalar x) const
{
// bisection
int iLow = 0;
int iHigh = numSamples_() - 1;
while (iLow + 1 < iHigh) {
int i = (iLow + iHigh) / 2;
if (x_(i) > x)
iHigh = i;
else
iLow = i;
};
return iLow;
}
/*!
* \brief Returns x[i] - x[i - 1]
*/
Scalar h_(int i) const
{
assert(x_(i) > x_(i-1)); // the sampling points must be given
// in ascending order
return x_(i) - x_(i - 1);
}
/*!
* \brief Returns the y coordinate of the i-th sampling point.
*/
Scalar x_(int i) const
{ return asImp_().x_(i); }
/*!
* \brief Returns the y coordinate of the i-th sampling point.
*/
Scalar y_(int i) const
{ return asImp_().y_(i); }
/*!
* \brief Returns the slope (i.e. first derivative) of the spline at
* the i-th sampling point.
*/
Scalar slope_(int i) const
{ return asImp_().slope_(i); }
// returns the coefficient in front of the x^0 term. In Stoer this
// is delta.
Scalar a_(int i) const
{ return evalDerivative3_(/*x=*/0, i); }
// returns the coefficient in front of the x^2 term In Stoer this
// is gamma.
Scalar b_(int i) const
{ return evalDerivative2_(/*x=*/0, i); }
// returns the coefficient in front of the x^1 term. In Stoer this
// is beta.
Scalar c_(int i) const
{ return evalDerivative_(/*x=*/0, i); }
// returns the coefficient in front of the x^0 term. In Stoer this
// is alpha.
Scalar d_(int i) const
{ return eval_(/*x=*/0, i); }
/*!
* \brief Returns the number of sampling points.
*/
int numSamples_() const
{ return asImp_().numSamples(); }
};
}
#endif