226a3eac94
The original implementation of change-set 90d8dd8c8040 contained a crucial misprint leading to incorrect results for all compressible fluids.
253 lines
10 KiB
C++
253 lines
10 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
|
const std::vector<int>& global_cell)
|
|
{
|
|
rock_.init(deck, global_cell);
|
|
pvt_.init(deck);
|
|
satprops_.init(deck, global_cell);
|
|
if (pvt_.numPhases() != satprops_.numPhases()) {
|
|
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
|
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
|
}
|
|
}
|
|
|
|
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
|
|
{
|
|
}
|
|
|
|
|
|
/// \return D, the number of spatial dimensions.
|
|
int BlackoilPropertiesFromDeck::numDimensions() const
|
|
{
|
|
return rock_.numDimensions();
|
|
}
|
|
|
|
/// \return N, the number of cells.
|
|
int BlackoilPropertiesFromDeck::numCells() const
|
|
{
|
|
return rock_.numCells();
|
|
}
|
|
|
|
/// \return Array of N porosity values.
|
|
const double* BlackoilPropertiesFromDeck::porosity() const
|
|
{
|
|
return rock_.porosity();
|
|
}
|
|
|
|
/// \return Array of ND^2 permeability values.
|
|
/// The D^2 permeability values for a cell are organized as a matrix,
|
|
/// which is symmetric (so ordering does not matter).
|
|
const double* BlackoilPropertiesFromDeck::permeability() const
|
|
{
|
|
return rock_.permeability();
|
|
}
|
|
|
|
|
|
// ---- Fluid interface ----
|
|
|
|
/// \return P, the number of phases (also the number of components).
|
|
int BlackoilPropertiesFromDeck::numPhases() const
|
|
{
|
|
return pvt_.numPhases();
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] p Array of n pressure values.
|
|
/// \param[in] z Array of nP surface volume values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
|
|
/// \param[out] mu Array of nP viscosity values, array must be valid before calling.
|
|
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
|
|
/// array must be valid before calling.
|
|
void BlackoilPropertiesFromDeck::viscosity(const int n,
|
|
const double* p,
|
|
const double* z,
|
|
const int* /*cells*/,
|
|
double* mu,
|
|
double* dmudp) const
|
|
{
|
|
if (dmudp) {
|
|
THROW("BlackoilPropertiesFromDeck::viscosity() -- derivatives of viscosity not yet implemented.");
|
|
} else {
|
|
pvt_.mu(n, p, z, mu);
|
|
}
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] p Array of n pressure values.
|
|
/// \param[in] z Array of nP surface volume values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
|
|
/// \param[out] A Array of nP^2 values, array must be valid before calling.
|
|
/// The P^2 values for a cell give the matrix A = RB^{-1} which
|
|
/// relates z to u by z = Au. The matrices are output in Fortran order.
|
|
/// \param[out] dAdp If non-null: array of nP^2 matrix derivative values,
|
|
/// array must be valid before calling. The matrices are output
|
|
/// in Fortran order.
|
|
void BlackoilPropertiesFromDeck::matrix(const int n,
|
|
const double* p,
|
|
const double* z,
|
|
const int* /*cells*/,
|
|
double* A,
|
|
double* dAdp) const
|
|
{
|
|
const int np = numPhases();
|
|
B_.resize(n*np);
|
|
R_.resize(n*np);
|
|
if (dAdp) {
|
|
dB_.resize(n*np);
|
|
dR_.resize(n*np);
|
|
pvt_.dBdp(n, p, z, &B_[0], &dB_[0]);
|
|
pvt_.dRdp(n, p, z, &R_[0], &dR_[0]);
|
|
} else {
|
|
pvt_.B(n, p, z, &B_[0]);
|
|
pvt_.R(n, p, z, &R_[0]);
|
|
}
|
|
const int* phase_pos = pvt_.phasePosition();
|
|
bool oil_and_gas = pvt_.phaseUsed()[BlackoilPhases::Liquid] &&
|
|
pvt_.phaseUsed()[BlackoilPhases::Vapour];
|
|
const int o = phase_pos[BlackoilPhases::Liquid];
|
|
const int g = phase_pos[BlackoilPhases::Vapour];
|
|
|
|
// Compute A matrix
|
|
// #pragma omp parallel for
|
|
for (int i = 0; i < n; ++i) {
|
|
double* m = A + i*np*np;
|
|
std::fill(m, m + np*np, 0.0);
|
|
// Diagonal entries.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
m[phase + phase*np] = 1.0/B_[i*np + phase];
|
|
}
|
|
// Off-diagonal entries.
|
|
if (oil_and_gas) {
|
|
m[o + g*np] = R_[i*np + g]/B_[i*np + g];
|
|
m[g + o*np] = R_[i*np + o]/B_[i*np + o];
|
|
}
|
|
}
|
|
|
|
// Derivative of A matrix.
|
|
// A = R*inv(B) whence
|
|
//
|
|
// dA/dp = (dR/dp*inv(B) + R*d(inv(B))/dp)
|
|
// = (dR/dp*inv(B) - R*inv(B)*(dB/dp)*inv(B))
|
|
// = (dR/dp - A*(dB/dp)) * inv(B)
|
|
//
|
|
// The B matrix is diagonal and that fact is exploited in the
|
|
// following implementation.
|
|
if (dAdp) {
|
|
// #pragma omp parallel for
|
|
std::copy(A, A + n*np*np, dAdp);
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
double* m = dAdp + i*np*np;
|
|
|
|
const double* dB = & dB_[i * np];
|
|
for (int i2 = 0; i2 < np; ++i2) {
|
|
for (int i1 = 0; i1 < np; ++i1) {
|
|
m[i2*np + i1] *= - dB[ i1 ]; // Note sign.
|
|
}
|
|
}
|
|
|
|
if (oil_and_gas) {
|
|
const double* dR = & dR_[i * np];
|
|
|
|
m[o*np + g] += dR[ o ];
|
|
m[g*np + o] += dR[ g ];
|
|
}
|
|
|
|
const double* B = & B_[i * np];
|
|
for (int i2 = 0; i2 < np; ++i2) {
|
|
for (int i1 = 0; i1 < np; ++i1) {
|
|
m[i2*np + i1] /= B[ i1 ];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the
|
|
/// matrix A = RB^{-1} which relates z to u by z = Au. The matrices
|
|
/// are assumed to be in Fortran order, and are typically the result
|
|
/// of a call to the method matrix().
|
|
/// \param[out] rho Array of nP density values, array must be valid before calling.
|
|
void BlackoilPropertiesFromDeck::density(const int n,
|
|
const double* A,
|
|
double* rho) const
|
|
{
|
|
const int np = numPhases();
|
|
const double* sdens = pvt_.surfaceDensities();
|
|
// #pragma omp parallel for
|
|
for (int i = 0; i < n; ++i) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
rho[np*i + phase] = 0.0;
|
|
for (int comp = 0; comp < np; ++comp) {
|
|
rho[np*i + phase] += A[i*np*np + np*phase + comp]*sdens[comp];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] s Array of nP saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
|
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
|
|
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
|
|
/// array must be valid before calling.
|
|
/// The P^2 derivative matrix is
|
|
/// m_{ij} = \frac{dkr_i}{ds^j},
|
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
|
void BlackoilPropertiesFromDeck::relperm(const int n,
|
|
const double* s,
|
|
const int* cells,
|
|
double* kr,
|
|
double* dkrds) const
|
|
{
|
|
satprops_.relperm(n, s, cells, kr, dkrds);
|
|
}
|
|
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] s Array of nP saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
|
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
|
|
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
|
|
/// array must be valid before calling.
|
|
/// The P^2 derivative matrix is
|
|
/// m_{ij} = \frac{dpc_i}{ds^j},
|
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
|
void BlackoilPropertiesFromDeck::capPress(const int n,
|
|
const double* s,
|
|
const int* cells,
|
|
double* pc,
|
|
double* dpcds) const
|
|
{
|
|
satprops_.capPress(n, s, cells, pc, dpcds);
|
|
}
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|