opm-core/tests/test_wachspresscoord.cpp
Atgeirr Flø Rasmussen 0a935774d2 Move GridManager to grid subdir.
Also remove GridAdapter (moved to dune-cornerpoint), and
moved grid.c implementation file to grid subdir.
2013-03-18 10:16:46 +01:00

364 lines
13 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#if HAVE_DYNAMIC_BOOST_TEST
#define BOOST_TEST_DYN_LINK
#endif
#define NVERBOSE // to suppress our messages when throwing
#define BOOST_TEST_MODULE WachspressCoordTest
#include <boost/test/unit_test.hpp>
#include <opm/core/utility/WachspressCoord.hpp>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/grid.h>
#include <cmath>
using namespace Opm;
namespace
{
class Interpolator
{
public:
explicit Interpolator(const UnstructuredGrid& grid)
: bcmethod_(grid), grid_(grid)
{
}
template <class Func>
double interpolate(const Func& f,
const int cell,
const std::vector<double>& x) const
{
const int ncor = bcmethod_.numCorners(cell);
bary_coord_.resize(ncor);
bcmethod_.cartToBary(cell, &x[0], &bary_coord_[0]);
double val = 0.0;
for (int cor = 0; cor < ncor; ++cor) {
const int vertex = bcmethod_.cornerInfo()[cell][cor].vertex;
const double vval = f(grid_.node_coordinates + grid_.dimensions*vertex);
val += vval*bary_coord_[cor];
}
return val;
}
private:
WachspressCoord bcmethod_;
const UnstructuredGrid grid_;
mutable std::vector<double> bary_coord_;
};
} // anonymous namespace
struct LinearFunc
{
double operator()(const double* x) const
{
return 1.0*x[0] + 2.0*x[1] + 3.0;
}
};
static void test2dCart()
{
// Set up 2d 1-cell cartesian case.
GridManager g(1, 1);
const UnstructuredGrid& grid = *g.c_grid();
Interpolator interp(grid);
LinearFunc f;
// Test a few points
std::vector<double> x(2);
x[0] = 0.23456;
x[1] = 0.87654;
double val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 0.5;
x[1] = 0.5;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 1.0;
x[1] = 0.5;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 1.0;
x[1] = 1.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
}
namespace
{
// Data for a pyramid. Node numbering goes
// lexicographic on bottom, then top.
// Face numbering goes xmin, xmax, ymin, ymax, bottom.
namespace Pyramid
{
static int face_nodes[] = { 0, 4, 2, 3, 4, 1, 0, 1, 4, 4, 3, 2, 0, 2, 3, 1, };
static int face_nodepos[] = { 0, 3, 6, 9, 12, 16 };
static int face_cells[] = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1 };
static int cell_faces[] = { 0, 1, 2, 3, 4 };
static int cell_facepos[] = { 0, 5 };
static double node_coordinates[] = { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0 };
static double face_centroids[] = { 0, 1.0/3.0, 1.0/3.0,
2.0/3.0, 1.0/3.0, 1.0/3.0,
1.0/3.0, 0, 1.0/3.0,
1.0/3.0, 2.0/3.0, 1.0/3.0,
0.5, 0.5, 0 };
static double face_areas[] = { 0.5, std::sqrt(2.0), 0.5, std::sqrt(2.0), 1.0 };
static double face_normals[] = { -0.5000, 0, 0,
0.5000, 0, 0.5000,
0, -0.5000, 0,
0, 0.5000, 0.5000,
0, 0, -1.0000 };
static double cell_centroids[] = { 0.375, 0.375, 0.25 };
static double cell_volumes[] = { 1.0/3.0 };
} // namespace Pyramid
UnstructuredGrid makePyramid()
{
// Make a 3d 1-cell grid, where the single cell is a pyramid.
UnstructuredGrid grid;
grid.dimensions = 3;
grid.number_of_cells = 1;
grid.number_of_faces = 5;
grid.number_of_nodes = 5;
grid.face_nodes = Pyramid::face_nodes;
grid.face_nodepos = Pyramid::face_nodepos;
grid.face_cells = Pyramid::face_cells;
grid.cell_faces = Pyramid::cell_faces;
grid.cell_facepos = Pyramid::cell_facepos;
grid.node_coordinates = Pyramid::node_coordinates;
grid.face_centroids = Pyramid::face_centroids;
grid.face_areas = Pyramid::face_areas;
grid.face_normals = Pyramid::face_normals;
grid.cell_centroids = Pyramid::cell_centroids;
grid.cell_volumes = Pyramid::cell_volumes;
return grid;
}
} // anonymous namespace
static void testPyramid()
{
// Set up a 3d 1-cell non-cartesian case (a pyramid).
UnstructuredGrid grid = makePyramid();
Interpolator interp(grid);
LinearFunc f;
// Test a few points
std::vector<double> x(3);
x[0] = 0.123;
x[1] = 0.0123;
x[2] = 0.213;
double val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 0.0;
x[1] = 0.0;
x[2] = 1.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 0.5;
x[1] = 0.5;
x[2] = 0.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 0.5;
x[1] = 0.5;
x[2] = 0.1;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
}
namespace
{
// Data for an irregular 2d polygon.
namespace Irreg2d
{
static int face_nodes[] = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 0 };
static int face_nodepos[] = { 0, 2, 4, 6, 8, 10 };
static int face_cells[] = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1 };
static int cell_faces[] = { 0, 1, 2, 3, 4 };
static int cell_facepos[] = { 0, 5 };
static double node_coordinates[] = { 0, 0, 3, 0, 3, 2, 1, 3, 0, 2 };
static double face_centroids[] = { 1.5, 0, 3, 1, 2, 2.5, 0.5, 2.5, 0, 1 };
static double face_areas[] = { 3, 2, std::sqrt(5.0), std::sqrt(2.0), 2 };
static double face_normals[] = { 0, -3, 2, 0, 1, 2, -1, 1, -2, 0 };
static double cell_centroids[] = { 22.0/15.0, 19.0/15.0 };
static double cell_volumes[] = { 7.5 };
} // namespace Irreg2d
UnstructuredGrid makeIrreg2d()
{
// Make a 2d 1-cell grid, where the single cell is a polygon.
UnstructuredGrid grid;
grid.dimensions = 2;
grid.number_of_cells = 1;
grid.number_of_faces = 5;
grid.number_of_nodes = 5;
grid.face_nodes = Irreg2d::face_nodes;
grid.face_nodepos = Irreg2d::face_nodepos;
grid.face_cells = Irreg2d::face_cells;
grid.cell_faces = Irreg2d::cell_faces;
grid.cell_facepos = Irreg2d::cell_facepos;
grid.node_coordinates = Irreg2d::node_coordinates;
grid.face_centroids = Irreg2d::face_centroids;
grid.face_areas = Irreg2d::face_areas;
grid.face_normals = Irreg2d::face_normals;
grid.cell_centroids = Irreg2d::cell_centroids;
grid.cell_volumes = Irreg2d::cell_volumes;
return grid;
}
} // anonymous namespace
static void testIrreg2d()
{
// Set up a 2d 1-cell where the single cell is a polygon.
UnstructuredGrid grid = makeIrreg2d();
Interpolator interp(grid);
LinearFunc f;
// Test a few points
std::vector<double> x(2);
x[0] = 1.2345;
x[1] = 2.0123;
double val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 0.0;
x[1] = 0.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 1.0;
x[1] = 3.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 3.0;
x[1] = 1.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
}
namespace
{
// Data for an irregular 3d prism.
namespace IrregPrism
{
static int face_nodes[] = { 0, 4, 2, 1, 3, 5, 0, 1, 5, 4, 2, 4, 5, 3, 2, 3, 0, 1};
static int face_nodepos[] = { 0, 3, 6, 10, 14, 18 };
static int face_cells[] = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1 };
static int cell_faces[] = { 0, 1, 2, 3, 4 };
static int cell_facepos[] = { 0, 5 };
static double node_coordinates[] = { 0, 0, 0,
2, 0, 0,
0, 1, 0,
2, 1, 0,
0, 0, 1,
1, 0, 1 };
static double face_centroids[] = { 0, 1.0/3.0, 1.0/3.0,
5.0/3.0, 1.0/3.0, 1.0/3.0,
7.0/9.0, 0, 4.0/9.0,
7.0/9.0, 5.0/9.0, 4.0/9.0,
1, 0.5, 0 };
static double face_areas[] = { 0.500000000000000,
0.707106781186548,
1.500000000000000,
2.121320343559642,
2.000000000000000 };
static double face_normals[] = { -0.500000000000000, 0, 0,
0.500000000000000, 0.000000000000000, 0.500000000000000,
0, -1.500000000000000, 0,
0, 1.500000000000000, 1.500000000000000,
0, 0, -2.000000000000000 };
static double cell_centroids[] = { 0.85, 0.35, 0.3 };
static double cell_volumes[] = { 5.0/6.0 };
} // namespace IrregPrism
UnstructuredGrid makeIrregPrism()
{
// Make a 3d 1-cell grid, where the single cell is a prism.
UnstructuredGrid grid;
grid.dimensions = 3;
grid.number_of_cells = 1;
grid.number_of_faces = 5;
grid.number_of_nodes = 6;
grid.face_nodes = IrregPrism::face_nodes;
grid.face_nodepos = IrregPrism::face_nodepos;
grid.face_cells = IrregPrism::face_cells;
grid.cell_faces = IrregPrism::cell_faces;
grid.cell_facepos = IrregPrism::cell_facepos;
grid.node_coordinates = IrregPrism::node_coordinates;
grid.face_centroids = IrregPrism::face_centroids;
grid.face_areas = IrregPrism::face_areas;
grid.face_normals = IrregPrism::face_normals;
grid.cell_centroids = IrregPrism::cell_centroids;
grid.cell_volumes = IrregPrism::cell_volumes;
return grid;
}
} // anonymous namespace
static void testIrregPrism()
{
// Set up a 3d 1-cell non-cartesian case (a prism).
UnstructuredGrid grid = makeIrregPrism();
Interpolator interp(grid);
LinearFunc f;
// Test a few points
std::vector<double> x(3);
x[0] = 0.123;
x[1] = 0.0123;
x[2] = 0.213;
double val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 0.0;
x[1] = 0.0;
x[2] = 1.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 1.0;
x[1] = 0.0;
x[2] = 1.0;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
x[0] = 0.5;
x[1] = 0.5;
x[2] = 0.5;
val = interp.interpolate(f, 0, x);
BOOST_CHECK(std::fabs(val - f(&x[0])) < 1e-12);
}
BOOST_AUTO_TEST_CASE(test_WachspressCoord)
{
test2dCart();
BOOST_CHECK_THROW(testPyramid(), std::exception);
testIrreg2d();
testIrregPrism();
}