462 lines
17 KiB
C++
462 lines
17 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/core/tof/AnisotropicEikonal.hpp>
|
|
#include <opm/core/grid/GridUtilities.hpp>
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/utility/RootFinders.hpp>
|
|
|
|
#if BOOST_HEAP_AVAILABLE
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
namespace
|
|
{
|
|
/// Euclidean (isotropic) distance.
|
|
double distanceIso(const double v1[2],
|
|
const double v2[2])
|
|
{
|
|
const double d[2] = { v2[0] - v1[0], v2[1] - v1[1] };
|
|
const double dist = std::sqrt(d[0]*d[0] + d[1]*d[1]);
|
|
return dist;
|
|
}
|
|
|
|
/// Anisotropic distance with respect to a metric g.
|
|
/// If d = v2 - v1, the distance is sqrt(d^T g d).
|
|
double distanceAniso(const double v1[2],
|
|
const double v2[2],
|
|
const double g[4])
|
|
{
|
|
const double d[2] = { v2[0] - v1[0], v2[1] - v1[1] };
|
|
const double dist = std::sqrt(+ g[0] * d[0] * d[0]
|
|
+ g[1] * d[0] * d[1]
|
|
+ g[2] * d[1] * d[0]
|
|
+ g[3] * d[1] * d[1]);
|
|
return dist;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// Construct solver.
|
|
/// \param[in] grid A 2d grid.
|
|
AnisotropicEikonal2d::AnisotropicEikonal2d(const UnstructuredGrid& grid)
|
|
: grid_(grid),
|
|
safety_factor_(1.2)
|
|
{
|
|
if (grid.dimensions != 2) {
|
|
OPM_THROW(std::logic_error, "Grid for AnisotropicEikonal2d must be 2d.");
|
|
}
|
|
cell_neighbours_ = cellNeighboursAcrossVertices(grid);
|
|
orderCounterClockwise(grid, cell_neighbours_);
|
|
computeGridRadius();
|
|
}
|
|
|
|
/// Solve the eikonal equation.
|
|
/// \param[in] metric Array of metric tensors, M, for each cell.
|
|
/// \param[in] startcells Array of cells where u = 0 at the centroid.
|
|
/// \param[out] solution Array of solution to the eikonal equation.
|
|
void AnisotropicEikonal2d::solve(const double* metric,
|
|
const std::vector<int>& startcells,
|
|
std::vector<double>& solution)
|
|
{
|
|
// Compute anisotropy ratios to be used by isClose().
|
|
computeAnisoRatio(metric);
|
|
|
|
// The algorithm used is described in J.A. Sethian and A. Vladimirsky,
|
|
// "Ordered Upwind Methods for Static Hamilton-Jacobi Equations".
|
|
// Notation in comments is as used in that paper: U is the solution,
|
|
// and q is the boundary condition. One difference is that we talk about
|
|
// grid cells instead of mesh points.
|
|
//
|
|
// Algorithm summary:
|
|
// 1. Put all cells in Far. U_i = \inf.
|
|
// 2. Move the startcells to Accepted. U_i = q(x_i)
|
|
// 3. Move cells adjacent to startcells to Considered, evaluate
|
|
// U_i = min_{(x_j,x_k) \in NF(x_i)} G_{j,k}
|
|
// 4. Find the Considered cell with the smallest value: r.
|
|
// 5. Move cell r to Accepted. Update AcceptedFront.
|
|
// 6. Recompute the value for all Considered cells within
|
|
// distance h * F_2/F1 from x_r. Use min of previous and new.
|
|
// 7. Move cells adjacent to r from Far to Considered.
|
|
// 8. If Considered is not empty, go to step 4.
|
|
|
|
// 1. Put all cells in Far. U_i = \inf.
|
|
const int num_cells = grid_.number_of_cells;
|
|
const double inf = 1e100;
|
|
solution.clear();
|
|
solution.resize(num_cells, inf);
|
|
is_accepted_.clear();
|
|
is_accepted_.resize(num_cells, false);
|
|
accepted_front_.clear();
|
|
considered_.clear();
|
|
considered_handles_.clear();
|
|
is_considered_.clear();
|
|
is_considered_.resize(num_cells, false);
|
|
|
|
// 2. Move the startcells to Accepted. U_i = q(x_i)
|
|
const int num_startcells = startcells.size();
|
|
for (int ii = 0; ii < num_startcells; ++ii) {
|
|
is_accepted_[startcells[ii]] = true;
|
|
solution[startcells[ii]] = 0.0;
|
|
}
|
|
accepted_front_.insert(startcells.begin(), startcells.end());
|
|
|
|
// 3. Move cells adjacent to startcells to Considered, evaluate
|
|
// U_i = min_{(x_j,x_k) \in NF(x_i)} G_{j,k}
|
|
for (int ii = 0; ii < num_startcells; ++ii) {
|
|
const int scell = startcells[ii];
|
|
const int num_nb = cell_neighbours_[scell].size();
|
|
for (int nb = 0; nb < num_nb; ++nb) {
|
|
const int nb_cell = cell_neighbours_[scell][nb];
|
|
if (!is_accepted_[nb_cell] && !is_considered_[nb_cell]) {
|
|
const double value = computeValue(nb_cell, metric, solution.data());
|
|
pushConsidered(std::make_pair(value, nb_cell));
|
|
}
|
|
}
|
|
}
|
|
|
|
while (!considered_.empty()) {
|
|
// 4. Find the Considered cell with the smallest value: r.
|
|
const ValueAndCell r = topConsidered();
|
|
// std::cout << "Accepting cell " << r.second << std::endl;
|
|
|
|
// 5. Move cell r to Accepted. Update AcceptedFront.
|
|
const int rcell = r.second;
|
|
is_accepted_[rcell] = true;
|
|
solution[rcell] = r.first;
|
|
popConsidered();
|
|
accepted_front_.insert(rcell);
|
|
for (auto it = accepted_front_.begin(); it != accepted_front_.end();) {
|
|
// Note that loop increment happens in the body of this loop.
|
|
const int cell = *it;
|
|
bool on_front = false;
|
|
for (auto it2 = cell_neighbours_[cell].begin(); it2 != cell_neighbours_[cell].end(); ++it2) {
|
|
if (!is_accepted_[*it2]) {
|
|
on_front = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!on_front) {
|
|
accepted_front_.erase(it++);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
// 6. Recompute the value for all Considered cells within
|
|
// distance h * F_2/F1 from x_r. Use min of previous and new.
|
|
for (auto it = considered_.begin(); it != considered_.end(); ++it) {
|
|
const int ccell = it->second;
|
|
if (isClose(rcell, ccell)) {
|
|
const double value = computeValueUpdate(ccell, metric, solution.data(), rcell);
|
|
if (value < it->first) {
|
|
// Update value for considered cell.
|
|
// Note that as solution values decrease, their
|
|
// goodness w.r.t. the heap comparator increase,
|
|
// therefore we may safely call the increase()
|
|
// modificator below.
|
|
considered_.increase(considered_handles_[ccell], std::make_pair(value, ccell));
|
|
}
|
|
}
|
|
}
|
|
|
|
// 7. Move cells adjacent to r from Far to Considered.
|
|
for (auto it = cell_neighbours_[rcell].begin(); it != cell_neighbours_[rcell].end(); ++it) {
|
|
const int nb_cell = *it;
|
|
if (!is_accepted_[nb_cell] && !is_considered_[nb_cell]) {
|
|
assert(solution[nb_cell] == inf);
|
|
const double value = computeValue(nb_cell, metric, solution.data());
|
|
pushConsidered(std::make_pair(value, nb_cell));
|
|
}
|
|
}
|
|
|
|
// 8. If Considered is not empty, go to step 4.
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AnisotropicEikonal2d::isClose(const int c1,
|
|
const int c2) const
|
|
{
|
|
const double* v[] = { grid_.cell_centroids + 2*c1,
|
|
grid_.cell_centroids + 2*c2 };
|
|
return distanceIso(v[0], v[1]) < safety_factor_ * aniso_ratio_[c1] * grid_radius_[c1];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double AnisotropicEikonal2d::computeValue(const int cell,
|
|
const double* metric,
|
|
const double* solution) const
|
|
{
|
|
// std::cout << "++++ computeValue(), cell = " << cell << std::endl;
|
|
const auto& nbs = cell_neighbours_[cell];
|
|
const int num_nbs = nbs.size();
|
|
const double inf = 1e100;
|
|
double val = inf;
|
|
for (int ii = 0; ii < num_nbs; ++ii) {
|
|
const int n[2] = { nbs[ii], nbs[(ii+1) % num_nbs] };
|
|
if (accepted_front_.count(n[0]) && accepted_front_.count(n[1])) {
|
|
const double cand_val = computeFromTri(cell, n[0], n[1], metric, solution);
|
|
val = std::min(val, cand_val);
|
|
}
|
|
}
|
|
if (val == inf) {
|
|
// Failed to find two accepted front nodes adjacent to this,
|
|
// so we go for a single-neighbour update.
|
|
for (int ii = 0; ii < num_nbs; ++ii) {
|
|
if (accepted_front_.count(nbs[ii])) {
|
|
const double cand_val = computeFromLine(cell, nbs[ii], metric, solution);
|
|
val = std::min(val, cand_val);
|
|
}
|
|
}
|
|
}
|
|
assert(val != inf);
|
|
// std::cout << "---> " << val << std::endl;
|
|
return val;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double AnisotropicEikonal2d::computeValueUpdate(const int cell,
|
|
const double* metric,
|
|
const double* solution,
|
|
const int new_cell) const
|
|
{
|
|
// std::cout << "++++ computeValueUpdate(), cell = " << cell << std::endl;
|
|
const auto& nbs = cell_neighbours_[cell];
|
|
const int num_nbs = nbs.size();
|
|
const double inf = 1e100;
|
|
double val = inf;
|
|
for (int ii = 0; ii < num_nbs; ++ii) {
|
|
const int n[2] = { nbs[ii], nbs[(ii+1) % num_nbs] };
|
|
if ((n[0] == new_cell || n[1] == new_cell)
|
|
&& accepted_front_.count(n[0]) && accepted_front_.count(n[1])) {
|
|
const double cand_val = computeFromTri(cell, n[0], n[1], metric, solution);
|
|
val = std::min(val, cand_val);
|
|
}
|
|
}
|
|
if (val == inf) {
|
|
// Failed to find two accepted front nodes adjacent to this,
|
|
// so we go for a single-neighbour update.
|
|
for (int ii = 0; ii < num_nbs; ++ii) {
|
|
if (nbs[ii] == new_cell && accepted_front_.count(nbs[ii])) {
|
|
const double cand_val = computeFromLine(cell, nbs[ii], metric, solution);
|
|
val = std::min(val, cand_val);
|
|
}
|
|
}
|
|
}
|
|
// std::cout << "---> " << val << std::endl;
|
|
return val;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double AnisotropicEikonal2d::computeFromLine(const int cell,
|
|
const int from,
|
|
const double* metric,
|
|
const double* solution) const
|
|
{
|
|
assert(!is_accepted_[cell]);
|
|
assert(is_accepted_[from]);
|
|
// Applying the first fundamental form to compute geodesic distance.
|
|
// Using the metric of 'cell', not 'from'.
|
|
const double dist = distanceAniso(grid_.cell_centroids + 2 * cell,
|
|
grid_.cell_centroids + 2 * from,
|
|
metric + 4 * cell);
|
|
return solution[from] + dist;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct DistanceDerivative
|
|
{
|
|
const double* x1;
|
|
const double* x2;
|
|
const double* x;
|
|
double u1;
|
|
double u2;
|
|
const double* g;
|
|
double operator()(const double theta) const
|
|
{
|
|
const double xt[2] = { (1-theta)*x1[0] + theta*x2[0], (1-theta)*x1[1] + theta*x2[1] };
|
|
const double a[2] = { x[0] - xt[0], x[1] - xt[1] };
|
|
const double b[2] = { x1[0] - x2[0], x1[1] - x2[1] };
|
|
const double dQdtheta = 2*(a[0]*b[0]*g[0] + a[0]*b[1]*g[1] + a[1]*b[0]*g[2] + a[1]*b[1]*g[3]);
|
|
const double val = u2 - u1 + dQdtheta/(2*distanceAniso(x, xt, g));
|
|
// std::cout << theta << " " << val << std::endl;
|
|
return val;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
double AnisotropicEikonal2d::computeFromTri(const int cell,
|
|
const int n0,
|
|
const int n1,
|
|
const double* metric,
|
|
const double* solution) const
|
|
{
|
|
// std::cout << "==== cell = " << cell << " n0 = " << n0 << " n1 = " << n1 << std::endl;
|
|
assert(!is_accepted_[cell]);
|
|
assert(is_accepted_[n0]);
|
|
assert(is_accepted_[n1]);
|
|
DistanceDerivative dd;
|
|
dd.x1 = grid_.cell_centroids + 2 * n0;
|
|
dd.x2 = grid_.cell_centroids + 2 * n1;
|
|
dd.x = grid_.cell_centroids + 2 * cell;
|
|
dd.u1 = solution[n0];
|
|
dd.u2 = solution[n1];
|
|
dd.g = metric + 4 * cell;
|
|
int iter = 0;
|
|
const double theta = RegulaFalsi<ContinueOnError>::solve(dd, 0.0, 1.0, 15, 1e-8, iter);
|
|
const double xt[2] = { (1-theta)*dd.x1[0] + theta*dd.x2[0],
|
|
(1-theta)*dd.x1[1] + theta*dd.x2[1] };
|
|
const double d1 = distanceAniso(dd.x1, dd.x, dd.g) + solution[n0];
|
|
const double d2 = distanceAniso(dd.x2, dd.x, dd.g) + solution[n1];
|
|
const double dt = distanceAniso(xt, dd.x, dd.g) + (1-theta)*solution[n0] + theta*solution[n1];
|
|
return std::min(d1, std::min(d2, dt));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const AnisotropicEikonal2d::ValueAndCell& AnisotropicEikonal2d::topConsidered() const
|
|
{
|
|
return considered_.top();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AnisotropicEikonal2d::pushConsidered(const ValueAndCell& vc)
|
|
{
|
|
HeapHandle h = considered_.push(vc);
|
|
considered_handles_[vc.second] = h;
|
|
is_considered_[vc.second] = true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AnisotropicEikonal2d::popConsidered()
|
|
{
|
|
is_considered_[considered_.top().second] = false;
|
|
considered_handles_.erase(considered_.top().second);
|
|
considered_.pop();
|
|
}
|
|
|
|
|
|
|
|
|
|
void AnisotropicEikonal2d::computeGridRadius()
|
|
{
|
|
const int num_cells = cell_neighbours_.size();
|
|
grid_radius_.resize(num_cells);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
double radius = 0.0;
|
|
const double* v1 = grid_.cell_centroids + 2*cell;
|
|
const auto& nb = cell_neighbours_[cell];
|
|
for (auto it = nb.begin(); it != nb.end(); ++it) {
|
|
const double* v2 = grid_.cell_centroids + 2*(*it);
|
|
radius = std::max(radius, distanceIso(v1, v2));
|
|
}
|
|
grid_radius_[cell] = radius;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void AnisotropicEikonal2d::computeAnisoRatio(const double* metric)
|
|
{
|
|
const int num_cells = cell_neighbours_.size();
|
|
aniso_ratio_.resize(num_cells);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
const double* m = metric + 4*cell;
|
|
// Find the two eigenvalues from trace and determinant.
|
|
const double t = m[0] + m[3];
|
|
const double d = m[0]*m[3] - m[1]*m[2];
|
|
const double sd = std::sqrt(t*t/4.0 - d);
|
|
const double eig[2] = { t/2.0 - sd, t/2.0 + sd };
|
|
// Anisotropy ratio is the max ratio of the eigenvalues.
|
|
aniso_ratio_[cell] = std::max(eig[0]/eig[1], eig[1]/eig[0]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
#else // BOOST_HEAP_AVAILABLE is false
|
|
|
|
namespace {
|
|
const char* AnisotropicEikonal2derrmsg =
|
|
"\n********************************************************************************\n"
|
|
"This library has not been compiled with support for the AnisotropicEikonal2d\n"
|
|
"class, due to too old version of the boost libraries (Boost.Heap from boost\n"
|
|
"version 1.49 or newer is required.\n"
|
|
"To use this class you must recompile opm-core on a system with sufficiently new\n"
|
|
"version of the boost libraries."
|
|
"\n********************************************************************************\n";
|
|
}
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
AnisotropicEikonal2d::AnisotropicEikonal2d(const UnstructuredGrid&)
|
|
{
|
|
OPM_THROW(std::logic_error, AnisotropicEikonal2derrmsg);
|
|
}
|
|
|
|
void AnisotropicEikonal2d::solve(const double*,
|
|
const std::vector<int>&,
|
|
std::vector<double>&)
|
|
{
|
|
OPM_THROW(std::logic_error, AnisotropicEikonal2derrmsg);
|
|
}
|
|
}
|
|
|
|
#endif // BOOST_HEAP_AVAILABLE
|