opm-core/opm/core/props/pvt/PvtInterface.hpp
Andreas Lauser cbb5910a93 incorperate the review comments/decisions for multi-region PVT
the largest change is that all classes below opm/core/props/pvt take
the PVT region index as an argument, the higher-level ones (i.e.,
BlackoilProps*) take cell indices.
2014-06-04 11:11:35 +02:00

179 lines
7.3 KiB
C++

/*
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_PVTINTERFACE_HEADER_INCLUDED
#define OPM_PVTINTERFACE_HEADER_INCLUDED
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
namespace Opm
{
class PvtInterface : public BlackoilPhases
{
public:
PvtInterface();
virtual ~PvtInterface();
/// \param[in] num_phases The number of active phases.
/// \param[in] phase_pos Array of BlackpoilPhases::MaxNumPhases
/// integers, giving the relative
/// positions of the three canonical
/// phases A, L, V in order to handle
/// arbitrary two-phase and three-phase situations.
void setPhaseConfiguration(const int num_phases, const int* phase_pos);
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply:
/// - pvtRegionIdx is an array of size n and represents the
/// index of the PVT table which should be used to calculate
/// the output. NULL can also be passed and is interpreted
/// such that the first table should be used for the output
/// - p, r and z are expected to be of size n, size n and
/// n*num_phases, respectively.
/// - Output arrays shall be of size n, and must be valid before
/// calling the method.
/// Viscosity as a function of p and z.
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_mu) const = 0;
/// Viscosity as a function of p and r.
/// The fluid is considered saturated if r >= rsSat(p).
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const = 0;
/// Viscosity as a function of p and r.
/// State condition determined by 'cond'.
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* r,
const PhasePresence* cond,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const = 0;
/// Formation volume factor as a function of p and z.
virtual void B(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_B) const = 0;
/// Formation volume factor and p-derivative as functions of p and z.
virtual void dBdp(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_B,
double* output_dBdp) const = 0;
/// The inverse of the volume factor b = 1 / B as a function of p and r.
/// The fluid is considered saturated if r >= rsSat(p).
virtual void b(const int n,
const int* pvtRegionIdx,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dpdr) const = 0;
/// The inverse of the volume factor b = 1 / B as a function of p and r.
/// State condition determined by 'cond'.
virtual void b(const int n,
const int* pvtRegionIdx,
const double* p,
const double* r,
const PhasePresence* cond,
double* output_b,
double* output_dbdp,
double* output_dpdr) const = 0;
/// Solution gas/oil ratio and its derivatives at saturated conditions as a function of p.
virtual void rsSat(const int n,
const int* pvtRegionIdx,
const double* p,
double* output_rsSat,
double* output_drsSatdp) const = 0;
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
virtual void rvSat(const int n,
const int* pvtRegionIdx,
const double* p,
double* output_rvSat,
double* output_drvSatdp) const = 0;
/// Solution factor as a function of p and z.
virtual void R(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_R) const = 0;
/// Solution factor and p-derivative as functions of p and z.
virtual void dRdp(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_R,
double* output_dRdp) const = 0;
protected:
int num_phases_;
int phase_pos_[MaxNumPhases];
};
/*!
* \brief Helper function to create an array containing the (C-Style)
* PVT table index for each compressed cell from an Eclipse deck.
*
* This function assumes that the degrees of freedom where PVT
* properties need to be calculated are grid cells. The main point
* of this function is to avoid code duplication because the
* Eclipse deck only contains Fortran-style PVT table indices
* which start at 1 instead of 0 and -- more relevantly -- it uses
* logically cartesian cell indices to specify the table index of
* a cell while the classes which use the PvtInterface
* implementations usually use compressed cells.
*/
void extractPvtTableIndex(std::vector<int>& pvtTableIdx,
Opm::DeckConstPtr deck,
size_t numCompressed,
const int* compressedToCartesianIdx);
} // namespace Opm
#endif // OPM_PVTINTERFACE_HEADER_INCLUDED