opm-core/opm/core/props/pvt/PvtLiveOil.hpp
Andreas Lauser 0aa7620a0e PVT classes: do not implement temperature dependence directly anymore
instead, we will be going with wrapper classes around the PvtInterface
in the next commits. this considerably reduces the amount of
copy-and-paste required for temperature support.
2015-03-17 12:40:05 +01:00

188 lines
7.6 KiB
C++

/*
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_PVTLIVEOIL_HEADER_INCLUDED
#define OPM_PVTLIVEOIL_HEADER_INCLUDED
#include <opm/core/props/pvt/PvtInterface.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <vector>
namespace Opm
{
/// Class for miscible live oil (with dissolved gas in liquid phase).
/// The PVT properties can either be given as a function of pressure (p), temperature (T) and surface volume (z)
/// or pressure (p), temperature (T) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
class PvtLiveOil : public PvtInterface
{
public:
PvtLiveOil(const std::vector<Opm::PvtoTable>& pvtoTables);
virtual ~PvtLiveOil();
/// Viscosity as a function of p, T and z.
virtual void mu(const int n,
const int* pvtTableIdx,
const double* p,
const double* T,
const double* z,
double* output_mu) const;
/// Viscosity and its p and r derivatives as a function of p, T and r.
/// The fluid is considered saturated if r >= rsSat(p).
virtual void mu(const int n,
const int* pvtTableIdx,
const double* p,
const double* T,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const;
/// Viscosity as a function of p, T and r.
/// State condition determined by 'cond'.
virtual void mu(const int n,
const int* pvtTableIdx,
const double* p,
const double* T,
const double* r,
const PhasePresence* cond,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const;
/// Formation volume factor as a function of p, T and z.
virtual void B(const int n,
const int* pvtTableIdx,
const double* p,
const double* T,
const double* z,
double* output_B) const;
/// Formation volume factor and p-derivative as functions of p, T and z.
virtual void dBdp(const int n,
const int* pvtTableIdx,
const double* p,
const double* T,
const double* z,
double* output_B,
double* output_dBdp) const;
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p, T and r.
/// The fluid is considered saturated if r >= rsSat(p).
virtual void b(const int n,
const int* pvtTableIdx,
const double* p,
const double* T,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const;
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p, T and r.
/// State condition determined by 'cond'.
virtual void b(const int n,
const int* pvtTableIdx,
const double* p,
const double* T,
const double* r,
const PhasePresence* cond,
double* output_b,
double* output_dbdp,
double* output_dbdr) const;
/// Solution gas/oil ratio and its derivatives at saturated conditions as a function of p.
virtual void rsSat(const int n,
const int* pvtTableIdx,
const double* p,
double* output_rsSat,
double* output_drsSatdp) const;
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
virtual void rvSat(const int n,
const int* pvtTableIdx,
const double* p,
double* output_rvSat,
double* output_drvSatdp) const;
/// Solution factor as a function of p and z.
virtual void R(const int n,
const int* pvtTableIdx,
const double* p,
const double* z,
double* output_R) const;
/// Solution factor and p-derivative as functions of p and z.
virtual void dRdp(const int n,
const int* pvtTableIdx,
const double* p,
const double* z,
double* output_R,
double* output_dRdp) const;
private:
int getTableIndex_(const int* pvtTableIdx, int cellIdx) const
{
if (!pvtTableIdx)
return 0;
return pvtTableIdx[cellIdx];
}
double evalB(size_t pvtTableIdx, double press, const double* surfvol) const;
void evalBDeriv(size_t pvtTableIdx, double press, const double* surfvol, double& B, double& dBdp) const;
double evalR(size_t pvtTableIdx, double press, const double* surfvol) const;
void evalRDeriv(size_t pvtTableIdx, double press, const double* surfvol, double& R, double& dRdp) const;
// item: 1=>1/B 2=>mu;
double miscible_oil(const double press,
const double* surfvol,
const int pvtTableIdx,
const int item,
const bool deriv = false) const;
double miscible_oil(const double press,
const double r,
const int pvtTableIdx,
const int item,
const int deriv = 0) const;
double miscible_oil(const double press,
const double r,
const PhasePresence& cond,
const int pvtTableIdx,
const int item,
const int deriv = 0) const;
// PVT properties of live oil (with dissolved gas). We need to
// store one table per PVT region.
std::vector<std::vector<std::vector<double> > > saturated_oil_table_;
std::vector<std::vector<std::vector<std::vector<double> > > > undersat_oil_tables_;
};
}
#endif // OPM_PVTLIVEOIL_HEADER_INCLUDED