Files
opm-core/opm/core/props/pvt/SinglePvtLiveGas.cpp
Atgeirr Flø Rasmussen 543230c8cf Suppress warnings in unimplemented functions.
This prevents warnings from functions that are right now just
a throw statement. Also cleaned up a few whitespace issues nearby.
2014-02-05 14:27:51 +01:00

499 lines
20 KiB
C++

//===========================================================================
//
// File: MiscibilityLiveGas.cpp
//
// Created: Wed Feb 10 09:21:53 2010
//
// Author: Bjørn Spjelkavik <bsp@sintef.no>
//
// Revision: $Id$
//
//===========================================================================
/*
Copyright 2010 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/props/pvt/SinglePvtLiveGas.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/linearInterpolation.hpp>
#include <algorithm>
namespace Opm
{
using Opm::linearInterpolation;
using Opm::linearInterpolationDerivative;
//------------------------------------------------------------------------
// Member functions
//-------------------------------------------------------------------------
/// Constructor
SinglePvtLiveGas::SinglePvtLiveGas(const table_t& pvtg)
{
// GAS, PVTG
const int region_number = 0;
if (pvtg.size() != 1) {
OPM_THROW(std::runtime_error, "More than one PVD-region");
}
saturated_gas_table_.resize(4);
const int sz = pvtg[region_number].size();
for (int k=0; k<4; ++k) {
saturated_gas_table_[k].resize(sz);
}
for (int i=0; i<sz; ++i) {
saturated_gas_table_[0][i] = pvtg[region_number][i][0]; // p
saturated_gas_table_[1][i] = 1.0/pvtg[region_number][i][2]; // 1/Bg
saturated_gas_table_[2][i] = pvtg[region_number][i][3]; // mu_g
saturated_gas_table_[3][i] = pvtg[region_number][i][1]; // Rv
}
undersat_gas_tables_.resize(sz);
for (int i=0; i<sz; ++i) {
undersat_gas_tables_[i].resize(3);
int tsize = (pvtg[region_number][i].size() - 1)/3;
undersat_gas_tables_[i][0].resize(tsize);
undersat_gas_tables_[i][1].resize(tsize);
undersat_gas_tables_[i][2].resize(tsize);
for (int j=0, k=0; j<tsize; ++j) {
undersat_gas_tables_[i][0][j] = pvtg[region_number][i][++k]; // Rv
undersat_gas_tables_[i][1][j] = 1.0/pvtg[region_number][i][++k]; // 1/Bg
undersat_gas_tables_[i][2][j] = pvtg[region_number][i][++k]; // mu_g
}
}
}
// Destructor
SinglePvtLiveGas::~SinglePvtLiveGas()
{
}
void SinglePvtLiveGas::mu(const int n,
const double* p,
const double* z,
double* output_mu) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_mu[i] = miscible_gas(p[i], z + num_phases_*i, 2, false);
}
}
/// Viscosity and its derivatives as a function of p and r.
void SinglePvtLiveGas::mu(const int /*n*/,
const double* /*p*/,
const double* /*r*/,
double* /*output_mu*/,
double* /*output_dmudp*/,
double* /*output_dmudr*/) const
{
OPM_THROW(std::runtime_error, "The new fluid interface not yet implemented");
}
/// Viscosity and its derivatives as a function of p and r.
void SinglePvtLiveGas::mu(const int n,
const double* p,
const double* r,
const PhasePresence* cond,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
for (int i = 0; i < n; ++i) {
const PhasePresence& cnd = cond[i];
output_mu[i] = miscible_gas(p[i], r[i], cnd,2, 0);
output_dmudp[i] = miscible_gas(p[i], r[i], cnd, 2, 1);
output_dmudr[i] = miscible_gas(p[i], r[i], cnd, 2, 2);
}
}
/// Formation volume factor as a function of p and z.
void SinglePvtLiveGas::B(const int n,
const double* p,
const double* z,
double* output_B) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_B[i] = evalB(p[i], z + num_phases_*i);
}
}
/// Formation volume factor and p-derivative as functions of p and z.
void SinglePvtLiveGas::dBdp(const int n,
const double* p,
const double* z,
double* output_B,
double* output_dBdp) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
evalBDeriv(p[i], z + num_phases_*i, output_B[i], output_dBdp[i]);
}
}
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p and r.
void SinglePvtLiveGas::b(const int /*n*/,
const double* /*p*/,
const double* /*r*/,
double* /*output_b*/,
double* /*output_dbdp*/,
double* /*output_dbdr*/) const
{
OPM_THROW(std::runtime_error, "The new fluid interface not yet implemented");
}
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p and r.
void SinglePvtLiveGas::b(const int n,
const double* p,
const double* r,
const PhasePresence* cond,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
const PhasePresence& cnd = cond[i];
output_b[i] = miscible_gas(p[i], r[i], cnd, 1, 0);
output_dbdp[i] = miscible_gas(p[i], r[i], cnd, 1, 1);
output_dbdr[i] = miscible_gas(p[i], r[i], cnd, 1, 2);
}
}
/// Gas resolution and its derivatives at bublepoint as a function of p.
void SinglePvtLiveGas::rvSat(const int n,
const double* p,
double* output_rvSat,
double* output_drvSatdp) const
{
for (int i = 0; i < n; ++i) {
output_rvSat[i] = linearInterpolation(saturated_gas_table_[0],
saturated_gas_table_[3],p[i]);
output_drvSatdp[i] = linearInterpolationDerivative(saturated_gas_table_[0],
saturated_gas_table_[3],p[i]);
}
}
void SinglePvtLiveGas::rsSat(const int n,
const double* /*p*/,
double* output_rsSat,
double* output_drsSatdp) const
{
std::fill(output_rsSat, output_rsSat + n, 0.0);
std::fill(output_drsSatdp, output_drsSatdp + n, 0.0);
}
/// Solution factor as a function of p and z.
void SinglePvtLiveGas::R(const int n,
const double* p,
const double* z,
double* output_R) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_R[i] = evalR(p[i], z + num_phases_*i);
}
}
/// Solution factor and p-derivative as functions of p and z.
void SinglePvtLiveGas::dRdp(const int n,
const double* p,
const double* z,
double* output_R,
double* output_dRdp) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
evalRDeriv(p[i], z + num_phases_*i, output_R[i], output_dRdp[i]);
}
}
// ---- Private methods ----
double SinglePvtLiveGas::evalB(const double press, const double* surfvol) const
{
if (surfvol[phase_pos_[Vapour]] == 0.0) {
// To handle no-gas case.
return 1.0;
}
return 1.0/miscible_gas(press, surfvol, 1, false);
}
void SinglePvtLiveGas::evalBDeriv(const double press, const double* surfvol,
double& Bval, double& dBdpval) const
{
if (surfvol[phase_pos_[Vapour]] == 0.0) {
// To handle no-gas case.
Bval = 1.0;
dBdpval = 0.0;
return;
}
Bval = evalB(press, surfvol);
dBdpval = -Bval*Bval*miscible_gas(press, surfvol, 1, true);
}
double SinglePvtLiveGas::evalR(const double press, const double* surfvol) const
{
if (surfvol[phase_pos_[Liquid]] == 0.0) {
// To handle no-gas case.
return 0.0;
}
double satR = linearInterpolation(saturated_gas_table_[0],
saturated_gas_table_[3], press);
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
if (satR < maxR ) {
// Saturated case
return satR;
} else {
// Undersaturated case
return maxR;
}
}
void SinglePvtLiveGas::evalRDeriv(const double press, const double* surfvol,
double& Rval, double& dRdpval) const
{
if (surfvol[phase_pos_[Liquid]] == 0.0) {
// To handle no-gas case.
Rval = 0.0;
dRdpval = 0.0;
return;
}
double satR = linearInterpolation(saturated_gas_table_[0],
saturated_gas_table_[3], press);
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
if (satR < maxR ) {
// Saturated case
Rval = satR;
dRdpval = linearInterpolationDerivative(saturated_gas_table_[0],
saturated_gas_table_[3],
press);
} else {
// Undersaturated case
Rval = maxR;
dRdpval = 0.0;
}
}
double SinglePvtLiveGas::miscible_gas(const double press,
const double* surfvol,
const int item,
const bool deriv) const
{
int section;
double Rval = linearInterpolation(saturated_gas_table_[0],
saturated_gas_table_[3], press,
section);
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
if (deriv) {
if (Rval < maxR ) { // Saturated case
return linearInterpolationDerivative(saturated_gas_table_[0],
saturated_gas_table_[item],
press);
} else { // Undersaturated case
int is = section;
if (undersat_gas_tables_[is][0].size() < 2) {
double val = (saturated_gas_table_[item][is+1]
- saturated_gas_table_[item][is]) /
(saturated_gas_table_[0][is+1] -
saturated_gas_table_[0][is]);
return val;
}
double val1 =
linearInterpolation(undersat_gas_tables_[is][0],
undersat_gas_tables_[is][item],
maxR);
double val2 =
linearInterpolation(undersat_gas_tables_[is+1][0],
undersat_gas_tables_[is+1][item],
maxR);
double val = (val2 - val1)/
(saturated_gas_table_[0][is+1] - saturated_gas_table_[0][is]);
return val;
}
} else {
if (Rval < maxR ) { // Saturated case
return linearInterpolation(saturated_gas_table_[0],
saturated_gas_table_[item],
press);
} else { // Undersaturated case
int is = section;
// Extrapolate from first table section
if (is == 0 && press < saturated_gas_table_[0][0]) {
return linearInterpolation(undersat_gas_tables_[0][0],
undersat_gas_tables_[0][item],
maxR);
}
// Extrapolate from last table section
int ltp = saturated_gas_table_[0].size() - 1;
if (is+1 == ltp && press > saturated_gas_table_[0][ltp]) {
return linearInterpolation(undersat_gas_tables_[ltp][0],
undersat_gas_tables_[ltp][item],
maxR);
}
// Interpolate between table sections
double w = (press - saturated_gas_table_[0][is]) /
(saturated_gas_table_[0][is+1] -
saturated_gas_table_[0][is]);
if (undersat_gas_tables_[is][0].size() < 2) {
double val = saturated_gas_table_[item][is] +
w*(saturated_gas_table_[item][is+1] -
saturated_gas_table_[item][is]);
return val;
}
double val1 =
linearInterpolation(undersat_gas_tables_[is][0],
undersat_gas_tables_[is][item],
maxR);
double val2 =
linearInterpolation(undersat_gas_tables_[is+1][0],
undersat_gas_tables_[is+1][item],
maxR);
double val = val1 + w*(val2 - val1);
return val;
}
}
}
double SinglePvtLiveGas::miscible_gas(const double press,
const double r,
const PhasePresence& cond,
const int item,
const int deriv) const
{
const bool isSat = cond.hasFreeOil();
// Derivative w.r.t p
if (deriv == 1) {
if (isSat) { // Saturated case
return linearInterpolationDerivative(saturated_gas_table_[0],
saturated_gas_table_[item],
press);
} else { // Undersaturated case
int is = tableIndex(saturated_gas_table_[0], press);
if (undersat_gas_tables_[is][0].size() < 2) {
double val = (saturated_gas_table_[item][is+1]
- saturated_gas_table_[item][is]) /
(saturated_gas_table_[0][is+1] -
saturated_gas_table_[0][is]);
return val;
}
double val1 =
linearInterpolation(undersat_gas_tables_[is][0],
undersat_gas_tables_[is][item],
r);
double val2 =
linearInterpolation(undersat_gas_tables_[is+1][0],
undersat_gas_tables_[is+1][item],
r);
double val = (val2 - val1)/
(saturated_gas_table_[0][is+1] - saturated_gas_table_[0][is]);
return val;
}
} else if (deriv == 2){
if (isSat) {
return 0;
} else {
int is = tableIndex(saturated_gas_table_[0], press);
double w = (press - saturated_gas_table_[0][is]) /
(saturated_gas_table_[0][is+1] - saturated_gas_table_[0][is]);
assert(undersat_gas_tables_[is][0].size() >= 2);
assert(undersat_gas_tables_[is+1][0].size() >= 2);
double val1 =
linearInterpolationDerivative(undersat_gas_tables_[is][0],
undersat_gas_tables_[is][item],
r);
double val2 =
linearInterpolationDerivative(undersat_gas_tables_[is+1][0],
undersat_gas_tables_[is+1][item],
r);
double val = val1 + w * (val2 - val1);
return val;
}
} else {
if (isSat) { // Saturated case
return linearInterpolation(saturated_gas_table_[0],
saturated_gas_table_[item],
press);
} else { // Undersaturated case
int is = tableIndex(saturated_gas_table_[0], press);
// Extrapolate from first table section
if (is == 0 && press < saturated_gas_table_[0][0]) {
return linearInterpolation(undersat_gas_tables_[0][0],
undersat_gas_tables_[0][item],
r);
}
// Extrapolate from last table section
//int ltp = saturated_gas_table_[0].size() - 1;
//if (is+1 == ltp && press > saturated_gas_table_[0][ltp]) {
// return linearInterpolation(undersat_gas_tables_[ltp][0],
// undersat_gas_tables_[ltp][item],
// r);
//}
// Interpolate between table sections
double w = (press - saturated_gas_table_[0][is]) /
(saturated_gas_table_[0][is+1] -
saturated_gas_table_[0][is]);
if (undersat_gas_tables_[is][0].size() < 2) {
double val = saturated_gas_table_[item][is] +
w*(saturated_gas_table_[item][is+1] -
saturated_gas_table_[item][is]);
return val;
}
double val1 =
linearInterpolation(undersat_gas_tables_[is][0],
undersat_gas_tables_[is][item],
r);
double val2 =
linearInterpolation(undersat_gas_tables_[is+1][0],
undersat_gas_tables_[is+1][item],
r);
double val = val1 + w*(val2 - val1);
return val;
}
}
}
} // namespace Opm