opm-core/opm/core/pressure/IncompTpfa.cpp
Joakim Hove c360079926 Replaced SimulatorState -> SimulationDatacontainer
Have removed the SimulatorState base class, and instead replaced with
the SimulationDatacontainer class from opm-common. The SimulatorState
objects were typcially created with a default constructor, and then
explicitly initialized with a SimulatorState::init() method. For the
SimulationDataContainer RAII is employed; the init( ) has been removed -
and there is no default constructor.
2016-03-29 10:44:49 +02:00

497 lines
18 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/common/data/SimulationDataContainer.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/props/IncompPropertiesInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/pressure/tpfa/ifs_tpfa.h>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <opm/core/pressure/mimetic/mimetic.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/sparse_sys.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/wells.h>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <algorithm>
namespace Opm
{
/// Construct solver for incompressible case.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] linsolver Linear solver to use.
/// \param[in] gravity Gravity vector. If non-null, the array should
/// have D elements.
/// \param[in] wells The wells argument. Will be used in solution,
/// is ignored if NULL.
/// Note: this class observes the well object, and
/// makes the assumption that the well topology
/// and completions does not change during the
/// run. However, controls (only) are allowed
/// to change.
/// \param[in] src Source terms. May be empty().
/// \param[in] bcs Boundary conditions, treat as all noflow if null.
IncompTpfa::IncompTpfa(const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
LinearSolverInterface& linsolver,
const double* gravity,
const Wells* wells,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs)
: grid_(grid),
props_(props),
rock_comp_props_(NULL),
linsolver_(linsolver),
residual_tol_(0.0),
change_tol_(0.0),
maxiter_(0),
gravity_(gravity),
wells_(wells),
src_(src),
bcs_(bcs),
htrans_(grid.cell_facepos[ grid.number_of_cells ]),
allcells_(grid.number_of_cells),
trans_ (grid.number_of_faces)
{
computeStaticData();
}
/// Construct solver, possibly with rock compressibility.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] rock_comp_props Rock compressibility properties. May be null.
/// \param[in] linsolver Linear solver to use.
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
/// \param[in] maxiter Maximum acceptable number of iterations.
/// \param[in] gravity Gravity vector. If non-null, the array should
/// have D elements.
/// \param[in] wells The wells argument. Will be used in solution,
/// is ignored if NULL.
/// Note: this class observes the well object, and
/// makes the assumption that the well topology
/// and completions does not change during the
/// run. However, controls (only) are allowed
/// to change.
/// \param[in] src Source terms. May be empty().
/// \param[in] bcs Boundary conditions, treat as all noflow if null.
IncompTpfa::IncompTpfa(const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
LinearSolverInterface& linsolver,
const double residual_tol,
const double change_tol,
const int maxiter,
const double* gravity,
const Wells* wells,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs)
: grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
linsolver_(linsolver),
residual_tol_(residual_tol),
change_tol_(change_tol),
maxiter_(maxiter),
gravity_(gravity),
wells_(wells),
src_(src),
bcs_(bcs),
htrans_(grid.cell_facepos[ grid.number_of_cells ]),
allcells_(grid.number_of_cells),
trans_ (grid.number_of_faces)
{
computeStaticData();
}
/// Destructor.
IncompTpfa::~IncompTpfa()
{
ifs_tpfa_destroy(h_);
}
/// Solve the pressure equation. If there is no pressure
/// dependency introduced by rock compressibility effects,
/// the equation is linear, and it is solved directly.
/// Otherwise, the nonlinear equations ares solved by a
/// Newton-Raphson scheme.
/// May throw an exception if the number of iterations
/// exceed maxiter (set in constructor).
void IncompTpfa::solve(const double dt,
SimulationDataContainer& state,
WellState& well_state)
{
if (rock_comp_props_ != 0 && rock_comp_props_->isActive()) {
solveRockComp(dt, state, well_state);
} else {
solveIncomp(dt, state, well_state);
}
}
// Solve with no rock compressibility (linear eqn).
void IncompTpfa::solveIncomp(const double dt,
SimulationDataContainer& state,
WellState& well_state)
{
// Set up properties.
computePerSolveDynamicData(dt, state, well_state);
// Assemble.
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
int ok = ifs_tpfa_assemble(gg, &forces_, &trans_[0], &gpress_omegaweighted_[0], h_);
if (!ok) {
OPM_THROW(std::runtime_error, "Failed assembling pressure system.");
}
// Solve.
linsolver_.solve(h_->A, h_->b, h_->x);
// Obtain solution.
assert(int(state.pressure().size()) == grid_.number_of_cells);
assert(int(state.faceflux().size()) == grid_.number_of_faces);
ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
soln.cell_press = &state.pressure()[0];
soln.face_flux = &state.faceflux()[0];
if (wells_ != NULL) {
assert(int(well_state.bhp().size()) == wells_->number_of_wells);
assert(int(well_state.perfRates().size()) == wells_->well_connpos[ wells_->number_of_wells ]);
soln.well_flux = &well_state.perfRates()[0];
soln.well_press = &well_state.bhp()[0];
}
ifs_tpfa_press_flux(gg, &forces_, &trans_[0], h_, &soln);
}
// Solve with rock compressibility (nonlinear eqn).
void IncompTpfa::solveRockComp(const double dt,
SimulationDataContainer& state,
WellState& well_state)
{
// This function is identical to CompressibleTpfa::solve().
// \TODO refactor?
const int nc = grid_.number_of_cells;
const int nw = (wells_) ? wells_->number_of_wells : 0;
// Set up dynamic data.
computePerSolveDynamicData(dt, state, well_state);
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
double inc_norm = 0.0;
int iter = 0;
double res_norm = residualNorm();
std::cout << "\nIteration Residual Change in p\n"
<< std::setw(9) << iter
<< std::setw(18) << res_norm
<< std::setw(18) << '*' << std::endl;
while ((iter < maxiter_) && (res_norm > residual_tol_)) {
// Solve for increment in Newton method:
// incr = x_{n+1} - x_{n} = -J^{-1}F
// (J is Jacobian matrix, F is residual)
solveIncrement();
++iter;
// Update pressure vars with increment.
for (int c = 0; c < nc; ++c) {
state.pressure()[c] += h_->x[c];
}
for (int w = 0; w < nw; ++w) {
well_state.bhp()[w] += h_->x[nc + w];
}
// Stop iterating if increment is small.
inc_norm = incrementNorm();
if (inc_norm <= change_tol_) {
std::cout << std::setw(9) << iter
<< std::setw(18) << '*'
<< std::setw(18) << inc_norm << std::endl;
break;
}
// Set up dynamic data.
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
// Update residual norm.
res_norm = residualNorm();
std::cout << std::setw(9) << iter
<< std::setw(18) << res_norm
<< std::setw(18) << inc_norm << std::endl;
}
if ((iter == maxiter_) && (res_norm > residual_tol_) && (inc_norm > change_tol_)) {
OPM_THROW(std::runtime_error, "IncompTpfa::solve() failed to converge in " << maxiter_ << " iterations.");
}
std::cout << "Solved pressure in " << iter << " iterations." << std::endl;
// Compute fluxes and face pressures.
computeResults(state, well_state);
}
/// Compute data that never changes (after construction).
void IncompTpfa::computeStaticData()
{
if (wells_ && (wells_->number_of_phases != props_.numPhases())) {
OPM_THROW(std::runtime_error, "Inconsistent number of phases specified (wells vs. props): "
<< wells_->number_of_phases << " != " << props_.numPhases());
}
const int num_dofs = grid_.number_of_cells + (wells_ ? wells_->number_of_wells : 0);
pressures_.resize(num_dofs);
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
tpfa_htrans_compute(gg, props_.permeability(), &htrans_[0]);
if (gravity_) {
gpress_.resize(gg->cell_facepos[ gg->number_of_cells ], 0.0);
mim_ip_compute_gpress(gg->number_of_cells, gg->dimensions, gravity_,
gg->cell_facepos, gg->cell_faces,
gg->face_centroids, gg->cell_centroids,
&gpress_[0]);
}
// gpress_omegaweighted_ is sent to assembler always, and it dislikes
// getting a zero pointer.
gpress_omegaweighted_.resize(gg->cell_facepos[ gg->number_of_cells ], 0.0);
if (rock_comp_props_) {
rock_comp_.resize(grid_.number_of_cells);
}
for (int c = 0; c < grid_.number_of_cells; ++c) {
allcells_[c] = c;
}
h_ = ifs_tpfa_construct(gg, const_cast<struct Wells*>(wells_));
}
/// Compute per-solve dynamic properties.
void IncompTpfa::computePerSolveDynamicData(const double /*dt*/,
const SimulationDataContainer& state,
const WellState& /*well_state*/)
{
// Computed here:
//
// std::vector<double> wdp_;
// std::vector<double> totmob_;
// std::vector<double> omega_;
// std::vector<double> trans_;
// std::vector<double> gpress_omegaweighted_;
// std::vector<double> initial_porevol_;
// ifs_tpfa_forces forces_;
// wdp_
if (wells_) {
Opm::computeWDP(*wells_, grid_, state.saturation(), props_.density(),
gravity_ ? gravity_[2] : 0.0, true, wdp_);
}
// totmob_, omega_, gpress_omegaweighted_
if (gravity_) {
computeTotalMobilityOmega(props_, allcells_, state.saturation(), totmob_, omega_);
mim_ip_density_update(grid_.number_of_cells, grid_.cell_facepos,
&omega_[0],
&gpress_[0], &gpress_omegaweighted_[0]);
} else {
computeTotalMobility(props_, allcells_, state.saturation(), totmob_);
}
// trans_
tpfa_eff_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &totmob_[0], &htrans_[0], &trans_[0]);
// initial_porevol_
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
}
// forces_
forces_.src = src_.empty() ? NULL : &src_[0];
forces_.bc = bcs_;
forces_.W = wells_;
forces_.totmob = &totmob_[0];
forces_.wdp = wdp_.empty() ? NULL : &wdp_[0];
}
/// Compute per-iteration dynamic properties.
void IncompTpfa::computePerIterationDynamicData(const double /*dt*/,
const SimulationDataContainer& state,
const WellState& well_state)
{
// These are the variables that get computed by this function:
//
// std::vector<double> porevol_
// std::vector<double> rock_comp_
// std::vector<double> pressures_
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
for (int cell = 0; cell < grid_.number_of_cells; ++cell) {
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
}
}
if (wells_) {
std::copy(state.pressure().begin(), state.pressure().end(), pressures_.begin());
std::copy(well_state.bhp().begin(), well_state.bhp().end(), pressures_.begin() + grid_.number_of_cells);
}
}
/// Compute the residual in h_->b and Jacobian in h_->A.
void IncompTpfa::assemble(const double dt,
const SimulationDataContainer& state,
const WellState& /*well_state*/)
{
const double* pressures = wells_ ? &pressures_[0] : &state.pressure()[0];
bool ok = ifs_tpfa_assemble_comprock_increment(const_cast<UnstructuredGrid*>(&grid_),
&forces_, &trans_[0], &gpress_omegaweighted_[0],
&porevol_[0], &rock_comp_[0], dt, pressures,
&initial_porevol_[0], h_);
if (!ok) {
OPM_THROW(std::runtime_error, "Failed assembling pressure system.");
}
}
/// Computes pressure increment, puts it in h_->x
void IncompTpfa::solveIncrement()
{
// Increment is equal to -J^{-1}R.
// The Jacobian is in h_->A, residual in h_->b.
linsolver_.solve(h_->A, h_->b, h_->x);
// It is not necessary to negate the increment,
// apparently the system for the increment is generated,
// not the Jacobian and residual as such.
// std::transform(h_->x, h_->x + h_->A->m, h_->x, std::negate<double>());
}
namespace {
template <class FI>
double infnorm(FI beg, FI end)
{
double norm = 0.0;
for (; beg != end; ++beg) {
norm = std::max(norm, std::fabs(*beg));
}
return norm;
}
} // anonymous namespace
/// Computes the inf-norm of the residual.
double IncompTpfa::residualNorm() const
{
return infnorm(h_->b, h_->b + h_->A->m);
}
/// Computes the inf-norm of pressure_increment_.
double IncompTpfa::incrementNorm() const
{
return infnorm(h_->x, h_->x + h_->A->m);
}
/// Compute the output.
void IncompTpfa::computeResults(SimulationDataContainer& state,
WellState& well_state) const
{
// Make sure h_ contains the direct-solution matrix
// and right hand side (not jacobian and residual).
// TODO: optimize by only adjusting b and diagonal of A.
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
ifs_tpfa_assemble(gg, &forces_, &trans_[0], &gpress_omegaweighted_[0], h_);
// Make sure h_->x contains the direct solution vector.
assert(int(state.pressure().size()) == grid_.number_of_cells);
assert(int(state.faceflux().size()) == grid_.number_of_faces);
std::copy(state.pressure().begin(), state.pressure().end(), h_->x);
std::copy(well_state.bhp().begin(), well_state.bhp().end(), h_->x + grid_.number_of_cells);
// Obtain solution.
ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
soln.cell_press = &state.pressure()[0];
soln.face_flux = &state.faceflux()[0];
if (wells_ != NULL) {
assert(int(well_state.bhp().size()) == wells_->number_of_wells);
assert(int(well_state.perfRates().size()) == wells_->well_connpos[ wells_->number_of_wells ]);
soln.well_flux = &well_state.perfRates()[0];
soln.well_press = &well_state.bhp()[0];
}
ifs_tpfa_press_flux(gg, &forces_, &trans_[0], h_, &soln); // TODO: Check what parts of h_ are used here.
}
} // namespace Opm