opm-core/opm/core/simulator/EquilibrationHelpers.hpp

865 lines
32 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED
#define OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/linearInterpolation.hpp>
#include <opm/core/utility/RegionMapping.hpp>
#include <opm/core/utility/RootFinders.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/Equil.hpp>
#include <memory>
/*
---- synopsis of EquilibrationHelpers.hpp ----
namespace Opm
{
namespace EQUIL {
template <class Props>
class DensityCalculator;
template <>
class DensityCalculator< BlackoilPropertiesInterface >;
namespace Miscibility {
class RsFunction;
class NoMixing;
class RsVD;
class RsSatAtContact;
}
template <class DensCalc>
class EquilReg;
struct PcEq;
inline double satFromPc(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc,
const bool increasing = false);
struct PcEqSum
inline double satFromSumOfPcs(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc);
} // namespace Equil
} // namespace Opm
---- end of synopsis of EquilibrationHelpers.hpp ----
*/
namespace Opm
{
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace EQUIL {
template <class Props>
class DensityCalculator;
/**
* Facility for calculating phase densities based on the
* BlackoilPropertiesInterface.
*
* Implements the crucial <CODE>operator()(p,svol)</CODE>
* function that is expected by class EquilReg.
*/
template <>
class DensityCalculator< BlackoilPropertiesInterface > {
public:
/**
* Constructor.
*
* \param[in] props Implementation of the
* BlackoilPropertiesInterface.
*
* \param[in] c Single cell used as a representative cell
* in a PVT region.
*/
DensityCalculator(const BlackoilPropertiesInterface& props,
const int c)
: props_(props)
, c_(1, c)
{
}
/**
* Compute phase densities of all phases at phase point
* given by (pressure, surface volume) tuple.
*
* \param[in] p Fluid pressure.
*
* \param[in] T Temperature.
*
* \param[in] z Surface volumes of all phases.
*
* \return Phase densities at phase point.
*/
std::vector<double>
operator()(const double p,
const double T,
const std::vector<double>& z) const
{
const int np = props_.numPhases();
std::vector<double> A(np * np, 0);
assert (z.size() == std::vector<double>::size_type(np));
double* dAdp = 0;
props_.matrix(1, &p, &T, &z[0], &c_[0], &A[0], dAdp);
std::vector<double> rho(np, 0.0);
props_.density(1, &A[0], &c_[0], &rho[0]);
return rho;
}
private:
const BlackoilPropertiesInterface& props_;
const std::vector<int> c_;
};
/**
* Types and routines relating to phase mixing in
* equilibration calculations.
*/
namespace Miscibility {
/**
* Base class for phase mixing functions.
*/
class RsFunction
{
public:
/**
* Function call operator.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \param[in] temp Temperature at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
virtual double operator()(const double depth,
const double press,
const double temp,
const double sat = 0.0) const = 0;
};
/**
* Type that implements "no phase mixing" policy.
*/
class NoMixing : public RsFunction {
public:
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \param[in] temp Temperature at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press. In "no mixing
* policy", this is identically zero.
*/
double
operator()(const double /* depth */,
const double /* press */,
const double /* temp */,
const double /* sat */ = 0.0) const
{
return 0.0;
}
};
/**
* Type that implements "dissolved gas-oil ratio"
* tabulated as a function of depth policy. Data
* typically taken from keyword 'RSVD'.
*/
class RsVD : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] depth Depth nodes.
* \param[in] rs Dissolved gas-oil ratio at @c depth.
*/
RsVD(const BlackoilPropertiesInterface& props,
const int cell,
const std::vector<double>& depth,
const std::vector<double>& rs)
: props_(props)
, cell_(cell)
, depth_(depth)
, rs_(rs)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1e100;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \param[in] temp Temperature at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double depth,
const double press,
const double temp,
const double sat_gas = 0.0) const
{
if (sat_gas > 0.0) {
return satRs(press, temp);
} else {
return std::min(satRs(press, temp), linearInterpolationNoExtrapolation(depth_, rs_, depth));
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
std::vector<double> depth_; /**< Depth nodes */
std::vector<double> rs_; /**< Dissolved gas-oil ratio */
double z_[BlackoilPhases::MaxNumPhases];
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRs(const double press, const double temp) const
{
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
// Rs/Bo is in the gas row and oil column of A_.
// 1/Bo is in the oil row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*opos + gpos] / A_[np*opos + opos];
}
};
/**
* Type that implements "vaporized oil-gas ratio"
* tabulated as a function of depth policy. Data
* typically taken from keyword 'RVVD'.
*/
class RvVD : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] depth Depth nodes.
* \param[in] rv Dissolved gas-oil ratio at @c depth.
*/
RvVD(const BlackoilPropertiesInterface& props,
const int cell,
const std::vector<double>& depth,
const std::vector<double>& rv)
: props_(props)
, cell_(cell)
, depth_(depth)
, rv_(rv)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1e100;
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RV
* value.
*
* \param[in] press Pressure at which to calculate RV
* value.
*
* \param[in] temp Temperature at which to calculate RV
* value.
*
* \return Vaporized oil-gas ratio (RV) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double depth,
const double press,
const double temp,
const double sat_oil = 0.0 ) const
{
if (std::abs(sat_oil) > 1e-16) {
return satRv(press, temp);
} else {
return std::min(satRv(press, temp), linearInterpolationNoExtrapolation(depth_, rv_, depth));
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
std::vector<double> depth_; /**< Depth nodes */
std::vector<double> rv_; /**< Vaporized oil-gas ratio */
double z_[BlackoilPhases::MaxNumPhases];
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRv(const double press, const double temp) const
{
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
// Rv/Bg is in the oil row and gas column of A_.
// 1/Bg is in the gas row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*gpos + opos] / A_[np*gpos + gpos];
}
};
/**
* Class that implements "dissolved gas-oil ratio" (Rs)
* as function of depth and pressure as follows:
*
* 1. The Rs at the gas-oil contact is equal to the
* saturated Rs value, Rs_sat_contact.
*
* 2. The Rs elsewhere is equal to Rs_sat_contact, but
* constrained to the saturated value as given by the
* local pressure.
*
* This should yield Rs-values that are constant below the
* contact, and decreasing above the contact.
*/
class RsSatAtContact : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] p_contact oil pressure at the contact
* \param[in] T_contact temperature at the contact
*/
RsSatAtContact(const BlackoilPropertiesInterface& props, const int cell, const double p_contact, const double T_contact)
: props_(props), cell_(cell)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1e100;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
rs_sat_contact_ = satRs(p_contact, T_contact);
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \param[in] temp Temperature at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double /* depth */,
const double press,
const double temp,
const double sat_gas = 0.0) const
{
if (sat_gas > 0.0) {
return satRs(press, temp);
} else {
return std::min(satRs(press, temp), rs_sat_contact_);
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
double z_[BlackoilPhases::MaxNumPhases];
double rs_sat_contact_;
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRs(const double press, const double temp) const
{
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
// Rs/Bo is in the gas row and oil column of A_.
// 1/Bo is in the oil row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*opos + gpos] / A_[np*opos + opos];
}
};
/**
* Class that implements "vaporized oil-gas ratio" (Rv)
* as function of depth and pressure as follows:
*
* 1. The Rv at the gas-oil contact is equal to the
* saturated Rv value, Rv_sat_contact.
*
* 2. The Rv elsewhere is equal to Rv_sat_contact, but
* constrained to the saturated value as given by the
* local pressure.
*
* This should yield Rv-values that are constant below the
* contact, and decreasing above the contact.
*/
class RvSatAtContact : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] p_contact oil pressure at the contact
* \param[in] T_contact temperature at the contact
*/
RvSatAtContact(const BlackoilPropertiesInterface& props, const int cell, const double p_contact, const double T_contact)
: props_(props), cell_(cell)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1e100;
rv_sat_contact_ = satRv(p_contact, T_contact);
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RV
* value.
*
* \param[in] press Pressure at which to calculate RV
* value.
*
* \param[in] temp Temperature at which to calculate RV
* value.
*
* \return Dissolved oil-gas ratio (RV) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double /*depth*/,
const double press,
const double temp,
const double sat_oil = 0.0) const
{
if (sat_oil > 0.0) {
return satRv(press, temp);
} else {
return std::min(satRv(press, temp), rv_sat_contact_);
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
double z_[BlackoilPhases::MaxNumPhases];
double rv_sat_contact_;
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRv(const double press, const double temp) const
{
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
// Rv/Bg is in the oil row and gas column of A_.
// 1/Bg is in the gas row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*gpos + opos] / A_[np*gpos + gpos];
}
};
} // namespace Miscibility
/**
* Aggregate information base of an equilibration region.
*
* Provides inquiry methods for retrieving depths of contacs
* and pressure values as well as a means of calculating fluid
* densities, dissolved gas-oil ratio and vapourised oil-gas
* ratios.
*
* \tparam DensCalc Type that provides access to a phase
* density calculation facility. Must implement an operator()
* declared as
* <CODE>
* std::vector<double>
* operator()(const double press,
* const std::vector<double>& svol )
* </CODE>
* that calculates the phase densities of all phases in @c
* svol at fluid pressure @c press.
*/
template <class DensCalc>
class EquilReg {
public:
/**
* Constructor.
*
* \param[in] rec Equilibration data of current region.
* \param[in] density Density calculator of current region.
* \param[in] rs Calculator of dissolved gas-oil ratio.
* \param[in] rv Calculator of vapourised oil-gas ratio.
* \param[in] pu Summary of current active phases.
*/
EquilReg(const EquilRecord& rec,
const DensCalc& density,
std::shared_ptr<Miscibility::RsFunction> rs,
std::shared_ptr<Miscibility::RsFunction> rv,
const PhaseUsage& pu)
: rec_ (rec)
, density_(density)
, rs_ (rs)
, rv_ (rv)
, pu_ (pu)
{
}
/**
* Type of density calculator.
*/
typedef DensCalc CalcDensity;
/**
* Type of dissolved gas-oil ratio calculator.
*/
typedef Miscibility::RsFunction CalcDissolution;
/**
* Type of vapourised oil-gas ratio calculator.
*/
typedef Miscibility::RsFunction CalcEvaporation;
/**
* Datum depth in current region
*/
double datum() const { return this->rec_.datumDepth(); }
/**
* Pressure at datum depth in current region.
*/
double pressure() const { return this->rec_.datumDepthPressure(); }
/**
* Depth of water-oil contact.
*/
double zwoc() const { return this->rec_.waterOilContactDepth(); }
/**
* water-oil capillary pressure at water-oil contact.
*
* \return P_o - P_w at WOC.
*/
double pcow_woc() const { return this->rec_.waterOilContactCapillaryPressure(); }
/**
* Depth of gas-oil contact.
*/
double zgoc() const { return this->rec_.gasOilContactDepth(); }
/**
* Gas-oil capillary pressure at gas-oil contact.
*
* \return P_g - P_o at GOC.
*/
double pcgo_goc() const { return this->rec_.gasOilContactCapillaryPressure(); }
/**
* Retrieve phase density calculator of current region.
*/
const CalcDensity&
densityCalculator() const { return this->density_; }
/**
* Retrieve dissolved gas-oil ratio calculator of current
* region.
*/
const CalcDissolution&
dissolutionCalculator() const { return *this->rs_; }
/**
* Retrieve vapourised oil-gas ratio calculator of current
* region.
*/
const CalcEvaporation&
evaporationCalculator() const { return *this->rv_; }
/**
* Retrieve active fluid phase summary.
*/
const PhaseUsage&
phaseUsage() const { return this->pu_; }
private:
EquilRecord rec_; /**< Equilibration data */
DensCalc density_; /**< Density calculator */
std::shared_ptr<Miscibility::RsFunction> rs_; /**< RS calculator */
std::shared_ptr<Miscibility::RsFunction> rv_; /**< RV calculator */
PhaseUsage pu_; /**< Active phase summary */
};
/// Functor for inverting capillary pressure function.
/// Function represented is
/// f(s) = pc(s) - target_pc
struct PcEq
{
PcEq(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc)
: props_(props),
phase_(phase),
cell_(cell),
target_pc_(target_pc)
{
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
}
double operator()(double s) const
{
s_[phase_] = s;
props_.capPress(1, s_, &cell_, pc_, 0);
return pc_[phase_] - target_pc_;
}
private:
const BlackoilPropertiesInterface& props_;
const int phase_;
const int cell_;
const int target_pc_;
mutable double s_[BlackoilPhases::MaxNumPhases];
mutable double pc_[BlackoilPhases::MaxNumPhases];
};
/// Compute saturation of some phase corresponding to a given
/// capillary pressure.
inline double satFromPc(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc,
const bool increasing = false)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
const double s0 = increasing ? smaxarr[phase] : sminarr[phase];
const double s1 = increasing ? sminarr[phase] : smaxarr[phase];
// Create the equation f(s) = pc(s) - target_pc
const PcEq f(props, phase, cell, target_pc);
const double f0 = f(s0);
const double f1 = f(s1);
if (f0 <= 0.0) {
return s0;
} else if (f1 > 0.0) {
return s1;
} else {
const int max_iter = 60;
const double tol = 1e-6;
int iter_used = -1;
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
const double sol = ScalarSolver::solve(f, std::min(s0, s1), std::max(s0, s1), max_iter, tol, iter_used);
return sol;
}
}
/// Functor for inverting a sum of capillary pressure functions.
/// Function represented is
/// f(s) = pc1(s) + pc2(1 - s) - target_pc
struct PcEqSum
{
PcEqSum(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc)
: props_(props),
phase1_(phase1),
phase2_(phase2),
cell_(cell),
target_pc_(target_pc)
{
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
}
double operator()(double s) const
{
s_[phase1_] = s;
s_[phase2_] = 1.0 - s;
props_.capPress(1, s_, &cell_, pc_, 0);
return pc_[phase1_] + pc_[phase2_] - target_pc_;
}
private:
const BlackoilPropertiesInterface& props_;
const int phase1_;
const int phase2_;
const int cell_;
const int target_pc_;
mutable double s_[BlackoilPhases::MaxNumPhases];
mutable double pc_[BlackoilPhases::MaxNumPhases];
};
/// Compute saturation of some phase corresponding to a given
/// capillary pressure, where the capillary pressure function
/// is given as a sum of two other functions.
inline double satFromSumOfPcs(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
const double smin = sminarr[phase1];
const double smax = smaxarr[phase1];
// Create the equation f(s) = pc1(s) + pc2(1-s) - target_pc
const PcEqSum f(props, phase1, phase2, cell, target_pc);
const double f0 = f(smin);
const double f1 = f(smax);
if (f0 <= 0.0) {
return smin;
} else if (f1 > 0.0) {
return smax;
} else {
const int max_iter = 30;
const double tol = 1e-6;
int iter_used = -1;
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
const double sol = ScalarSolver::solve(f, smin, smax, max_iter, tol, iter_used);
return sol;
}
}
/// Compute saturation from depth. Used for constant capillary pressure function
inline double satFromDepth(const BlackoilPropertiesInterface& props,
const double cellDepth,
const double contactDepth,
const int phase,
const int cell,
const bool increasing = false)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
const double s0 = increasing ? smaxarr[phase] : sminarr[phase];
const double s1 = increasing ? sminarr[phase] : smaxarr[phase];
if (cellDepth < contactDepth){
return s0;
} else {
return s1;
}
}
/// Return true if capillary pressure function is constant
inline bool isConstPc(const BlackoilPropertiesInterface& props,
const int phase,
const int cell)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
// Create the equation f(s) = pc(s);
const PcEq f(props, phase, cell, 0);
const double f0 = f(sminarr[phase]);
const double f1 = f(smaxarr[phase]);
return std::abs(f0 - f1) < std::numeric_limits<double>::epsilon();
}
} // namespace Equil
} // namespace Opm
#endif // OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED