opm-core/opm/core/simulator/AdaptiveTimeStepping.hpp
Robert K 6eeecbb02b - adjust OutputWriter to SimulatorTimerInterface
- remove WriterTimer from EclipseWriter and use SimulatorTimerInterface
- adjust to the above in AdaptiveTimeStepping.
2015-01-09 16:22:03 +01:00

89 lines
3.7 KiB
C++

/*
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SUBSTEPPING_HEADER_INCLUDED
#define OPM_SUBSTEPPING_HEADER_INCLUDED
#include <iostream>
#include <utility>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/simulator/TimeStepControlInterface.hpp>
namespace Opm {
// AdaptiveTimeStepping
//---------------------
class AdaptiveTimeStepping
{
public:
//! \brief contructor taking parameter object
AdaptiveTimeStepping( const parameter::ParameterGroup& param );
/** \brief step method that acts like the solver::step method
in a sub cycle of time steps
\param timer simulator timer providing time and timestep
\param solver solver object that must implement a method step( dt, state, well_state )
\param state current state of the solution variables
\param well_state additional well state object
*/
template <class Solver, class State, class WellState>
void step( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state );
/** \brief step method that acts like the solver::step method
in a sub cycle of time steps
\param timer simulator timer providing time and timestep
\param solver solver object that must implement a method step( dt, state, well_state )
\param state current state of the solution variables
\param well_state additional well state object
\param outputWriter writer object to write sub steps
*/
template <class Solver, class State, class WellState>
void step( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state,
OutputWriter& outputWriter );
protected:
template <class Solver, class State, class WellState>
void stepImpl( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state,
OutputWriter* outputWriter);
typedef std::unique_ptr< TimeStepControlInterface > TimeStepControlType;
TimeStepControlType timeStepControl_; //!< time step control object
const double initial_fraction_; //!< fraction to take as a guess for initial time interval
const double restart_factor_; //!< factor to multiply time step with when solver fails to converge
const double growth_factor_; //!< factor to multiply time step when solver recovered from failed convergence
const int solver_restart_max_; //!< how many restart of solver are allowed
const bool solver_verbose_; //!< solver verbosity
const bool timestep_verbose_; //!< timestep verbosity
double last_timestep_; //!< size of last timestep
};
}
#include <opm/core/simulator/AdaptiveTimeStepping_impl.hpp>
#endif