opm-core/tests/test_spline.cpp
2014-02-05 15:05:26 +01:00

347 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2010-2012 by Andreas Lauser *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \brief This is a program to test the polynomial spline interpolation.
*
* It just prints some function to stdout. You can look at the result
* using the following commands:
*
----------- snip -----------
./test_spline > spline.csv
gnuplot
gnuplot> plot "spline.csv" using 1:2 w l ti "Curve", \
"spline.csv" using 1:3 w l ti "Derivative", \
"spline.csv" using 1:4 w p ti "Monotonical"
----------- snap -----------
*/
#include "config.h"
#include <array>
#include <opm/core/utility/Spline.hpp>
#define GCC_VERSION (__GNUC__ * 10000 \
+ __GNUC_MINOR__ * 100 \
+ __GNUC_PATCHLEVEL__)
template <class Spline>
void testCommon(const Spline &sp,
const double *x,
const double *y)
{
static double eps = 1e-10;
static double epsFD = 1e-7;
int n = sp.numSamples();
for (int i = 0; i < n; ++i) {
// sure that we hit all sampling points
double y0 = (i>0)?sp.eval(x[i]-eps):y[0];
double y1 = sp.eval(x[i]);
double y2 = (i<n-1)?sp.eval(x[i]+eps):y[n-1];
if (std::abs(y0 - y[i]) > 100*eps || std::abs(y2 - y[i]) > 100*eps)
OPM_THROW(std::runtime_error,
"Spline seems to be discontinuous at sampling point " << i << "!");
if (std::abs(y1 - y[i]) > eps)
OPM_THROW(std::runtime_error,
"Spline does not capture sampling point " << i << "!");
// make sure the derivative is continuous (assuming that the
// second derivative is smaller than 1000)
double d1 = sp.evalDerivative(x[i]);
double d0 = (i>0)?sp.evalDerivative(x[i]-eps):d1;
double d2 = (i<n-1)?sp.evalDerivative(x[i]+eps):d1;
if (std::abs(d1 - d0) > 1000*eps || std::abs(d2 - d0) > 1000*eps)
OPM_THROW(std::runtime_error,
"Spline seems to exhibit a discontinuous derivative at sampling point " << i << "!");
}
// make sure the derivatives are consistent with the curve
int np = 3*n;
for (int i = 0; i < np; ++i) {
double xval = sp.xMin() + (sp.xMax() - sp.xMin())*i/np;
// first derivative
double y1 = sp.eval(xval+epsFD);
double y0 = sp.eval(xval);
double mFD = (y1 - y0)/epsFD;
double m = sp.evalDerivative(xval);
if (std::abs( mFD - m ) > 1000*epsFD)
OPM_THROW(std::runtime_error,
"Derivative of spline seems to be inconsistent with cuve"
" (" << mFD << " - " << m << " = " << mFD - m << ")!");
// second derivative
y1 = sp.evalDerivative(xval+epsFD);
y0 = sp.evalDerivative(xval);
mFD = (y1 - y0)/epsFD;
m = sp.evalSecondDerivative(xval);
if (std::abs( mFD - m ) > 1000*epsFD)
OPM_THROW(std::runtime_error,
"Second derivative of spline seems to be inconsistent with cuve"
" (" << mFD << " - " << m << " = " << mFD - m << ")!");
// Third derivative
y1 = sp.evalSecondDerivative(xval+epsFD);
y0 = sp.evalSecondDerivative(xval);
mFD = (y1 - y0)/epsFD;
m = sp.evalThirdDerivative(xval);
if (std::abs( mFD - m ) > 1000*epsFD)
OPM_THROW(std::runtime_error,
"Third derivative of spline seems to be inconsistent with cuve"
" (" << mFD << " - " << m << " = " << mFD - m << ")!");
}
}
template <class Spline>
void testFull(const Spline &sp,
const double *x,
const double *y,
double m0,
double m1)
{
// test the common properties of splines
testCommon(sp, x, y);
static double eps = 1e-5;
int n = sp.numSamples();
// make sure the derivative at both end points is correct
double d0 = sp.evalDerivative(x[0]);
double d1 = sp.evalDerivative(x[n-1]);
if (std::abs(d0 - m0) > eps)
OPM_THROW(std::runtime_error,
"Invalid derivative at beginning of interval: is "
<< d0 << " ought to be " << m0);
if (std::abs(d1 - m1) > eps)
OPM_THROW(std::runtime_error,
"Invalid derivative at end of interval: is "
<< d1 << " ought to be " << m1);
}
template <class Spline>
void testNatural(const Spline &sp,
const double *x,
const double *y)
{
// test the common properties of splines
testCommon(sp, x, y);
static double eps = 1e-5;
int n = sp.numSamples();
// make sure the second derivatives at both end points are 0
double d0 = sp.evalDerivative(x[0]);
double d1 = sp.evalDerivative(x[0] + eps);
double d2 = sp.evalDerivative(x[n-1] - eps);
double d3 = sp.evalDerivative(x[n-1]);
if (std::abs(d1 - d0)/eps > 1000*eps)
OPM_THROW(std::runtime_error,
"Invalid second derivative at beginning of interval: is "
<< (d1 - d0)/eps << " ought to be 0");
if (std::abs(d3 - d2)/eps > 1000*eps)
OPM_THROW(std::runtime_error,
"Invalid second derivative at end of interval: is "
<< (d3 - d2)/eps << " ought to be 0");
}
template <class Spline>
void testMonotonic(const Spline &sp,
const double *x,
const double *y)
{
// test the common properties of splines
testCommon(sp, x, y);
int n = sp.numSamples();
for (int i = 0; i < n - 1; ++ i) {
// make sure that the spline is monotonic for each interval
// between sampling points
if (!sp.monotonic(x[i], x[i + 1]))
OPM_THROW(std::runtime_error,
"Spline says it is not monotonic in interval "
<< i << " where it should be");
// test the intersection methods
double d = (y[i] + y[i+1])/2;
double interX = sp.intersectInterval(x[i], x[i+1],
/*a=*/0, /*b=*/0, /*c=*/0, d);
double interY = sp.eval(interX);
if (std::abs(interY - d) > 1e-5)
OPM_THROW(std::runtime_error,
"Spline::intersectInterval() seems to be broken: "
<< sp.eval(interX) << " - " << d << " = " << sp.eval(interX) - d << "!");
}
// make sure the spline says to be monotonic on the (extrapolated)
// left and right sides
if (!sp.monotonic(x[0] - 1.0, (x[0] + x[1])/2, /*extrapolate=*/true))
OPM_THROW(std::runtime_error,
"Spline says it is not monotonic on left side where it should be");
if (!sp.monotonic((x[n - 2]+ x[n - 1])/2, x[n-1] + 1.0, /*extrapolate=*/true))
OPM_THROW(std::runtime_error,
"Spline says it is not monotonic on right side where it should be");
for (int i = 0; i < n - 2; ++ i) {
// make sure that the spline says that it is non-monotonic for
// if extrema are within the queried interval
if (sp.monotonic((x[i] + x[i + 1])/2, (x[i + 1] + x[i + 2])/2))
OPM_THROW(std::runtime_error,
"Spline says it is monotonic in interval "
<< i << " where it should not be");
}
}
void testAll()
{
double x[] = { 0, 5, 7.5, 8.75, 9.375 };
double y[] = { 10, 0, 10, 0, 10 };
double m0 = 10;
double m1 = -10;
double points[][2] =
{
{x[0], y[0]},
{x[1], y[1]},
{x[2], y[2]},
{x[3], y[3]},
{x[4], y[4]},
};
#if GCC_VERSION >= 40500
std::initializer_list<const std::pair<double, double> > pointsInitList =
{
{x[0], y[0]},
{x[1], y[1]},
{x[2], y[2]},
{x[3], y[3]},
{x[4], y[4]},
};
#endif
std::vector<double> xVec;
std::vector<double> yVec;
std::vector<double*> pointVec;
for (int i = 0; i < 5; ++i) {
xVec.push_back(x[i]);
yVec.push_back(y[i]);
pointVec.push_back(points[i]);
}
/////////
// test spline with two sampling points
/////////
// full spline
{ Opm::Spline<double> sp(x[0], x[1], y[0], y[1], m0, m1); sp.set(x[0],x[1],y[0],y[1],m0, m1); testFull(sp, x, y, m0, m1); };
{ Opm::Spline<double> sp(2, x, y, m0, m1); sp.setXYArrays(2, x, y, m0, m1); testFull(sp, x, y, m0, m1); };
{ Opm::Spline<double> sp(2, points, m0, m1); sp.setArrayOfPoints(2, points, m0, m1); testFull(sp, x, y, m0, m1); };
/////////
// test variable length splines
/////////
// full spline
{ Opm::Spline<double> sp(5, x, y, m0, m1); sp.setXYArrays(5,x,y,m0, m1); testFull(sp, x, y, m0, m1); };
{ Opm::Spline<double> sp(xVec, yVec, m0, m1); sp.setXYContainers(xVec,yVec,m0, m1); testFull(sp, x, y, m0, m1); };
{ Opm::Spline<double> sp; sp.setArrayOfPoints(5,points,m0, m1); testFull(sp, x, y, m0, m1); };
{ Opm::Spline<double> sp; sp.setContainerOfPoints(pointVec,m0, m1); testFull(sp, x, y, m0, m1); };
#if GCC_VERSION >= 40500
{ Opm::Spline<double> sp; sp.setContainerOfTuples(pointsInitList,m0, m1); testFull(sp, x, y, m0, m1); };
#endif
// natural spline
{ Opm::Spline<double> sp(5, x, y); sp.setXYArrays(5,x,y); testNatural(sp, x, y); };
{ Opm::Spline<double> sp(xVec, yVec); sp.setXYContainers(xVec,yVec); testNatural(sp, x, y); };
{ Opm::Spline<double> sp; sp.setArrayOfPoints(5,points); testNatural(sp, x, y); };
{ Opm::Spline<double> sp; sp.setContainerOfPoints(pointVec); testNatural(sp, x, y); };
#if GCC_VERSION >= 40500
{ Opm::Spline<double> sp; sp.setContainerOfTuples(pointsInitList); testNatural(sp, x, y); };
#endif
}
void plot()
{
const int numSamples = 5;
const int n = numSamples - 1;
typedef std::array<double, numSamples> FV;
double x_[] = { 0, 5, 7.5, 8.75, 10 };
double y_[] = { 10, 0, 10, 0, 10 };
double m1 = 10;
double m2 = -10;
FV &xs = *reinterpret_cast<FV*>(x_);
FV &ys = *reinterpret_cast<FV*>(y_);
Opm::Spline<double> spFull(xs, ys, m1, m2);
Opm::Spline<double> spNatural(xs, ys);
Opm::Spline<double> spPeriodic(xs, ys, /*type=*/Opm::Spline<double>::Periodic);
Opm::Spline<double> spMonotonic(xs, ys, /*type=*/Opm::Spline<double>::Monotonic);
testMonotonic(spMonotonic, x_, y_);
spFull.printCSV(x_[0] - 1.00001,
x_[n] + 1.00001,
1000);
std::cout << "\n";
spNatural.printCSV(x_[0] - 1.00001,
x_[n] + 1.00001,
1000);
std::cout << "\n";
spPeriodic.printCSV(x_[0] - 1.00001,
x_[n] + 1.00001,
1000);
std::cout << "\n";
spMonotonic.printCSV(x_[0] - 1.00001,
x_[n] + 1.00001,
1000);
std::cout << "\n";
}
int main()
{
try {
testAll();
plot();
}
catch (const std::exception &e) {
std::cout << "Caught OPM exception: " << e.what() << "\n";
}
return 0;
}