opm-core/opm/core/GridManager.cpp
2013-03-07 22:59:06 +01:00

224 lines
7.1 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/GridManager.hpp>
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/cart_grid.h>
#include <opm/core/grid/cornerpoint_grid.h>
#include <algorithm>
#include <numeric>
namespace Opm
{
/// Construct a 3d corner-point grid from a deck.
GridManager::GridManager(const Opm::EclipseGridParser& deck)
{
// We accept two different ways to specify the grid.
// 1. Corner point format.
// Requires ZCORN, COORDS, DIMENS or SPECGRID, optionally
// ACTNUM, optionally MAPAXES.
// For this format, we will verify that DXV, DYV, DZV,
// DEPTHZ and TOPS are not present.
// 2. Tensor grid format.
// Requires DXV, DYV, DZV, optionally DEPTHZ or TOPS.
// For this format, we will verify that ZCORN, COORDS
// and ACTNUM are not present.
// Note that for TOPS, we only allow a uniform vector of values.
if (deck.hasField("ZCORN") && deck.hasField("COORD")) {
initFromDeckCornerpoint(deck);
} else if (deck.hasField("DXV") && deck.hasField("DYV") && deck.hasField("DZV")) {
initFromDeckTensorgrid(deck);
} else {
THROW("Could not initialize grid from deck. "
"Need either ZCORN + COORD or DXV + DYV + DZV keywords.");
}
}
/// Construct a 2d cartesian grid with cells of unit size.
GridManager::GridManager(int nx, int ny)
{
ug_ = create_grid_cart2d(nx, ny);
if (!ug_) {
THROW("Failed to construct grid.");
}
}
/// Construct a 3d cartesian grid with cells of unit size.
GridManager::GridManager(int nx, int ny, int nz)
{
ug_ = create_grid_cart3d(nx, ny, nz);
if (!ug_) {
THROW("Failed to construct grid.");
}
}
/// Construct a 3d cartesian grid with cells of size [dx, dy, dz].
GridManager::GridManager(int nx, int ny, int nz,
double dx, double dy, double dz)
{
ug_ = create_grid_hexa3d(nx, ny, nz, dx, dy, dz);
if (!ug_) {
THROW("Failed to construct grid.");
}
}
/// Construct a grid from an input file.
/// The file format used is currently undocumented,
/// and is therefore only suited for internal use.
GridManager::GridManager(const std::string& input_filename)
{
ug_ = read_grid(input_filename.c_str());
if (!ug_) {
THROW("Failed to read grid from file " << input_filename);
}
}
/// Destructor.
GridManager::~GridManager()
{
destroy_grid(ug_);
}
/// Access the managed UnstructuredGrid.
/// The method is named similarly to c_str() in std::string,
/// to make it clear that we are returning a C-compatible struct.
const UnstructuredGrid* GridManager::c_grid() const
{
return ug_;
}
// Construct corner-point grid from deck.
void GridManager::initFromDeckCornerpoint(const Opm::EclipseGridParser& deck)
{
// Extract data from deck.
// Collect in input struct for preprocessing.
struct grdecl grdecl = deck.get_grdecl();
// Process grid.
ug_ = create_grid_cornerpoint(&grdecl, 0.0);
if (!ug_) {
THROW("Failed to construct grid.");
}
}
namespace
{
std::vector<double> coordsFromDeltas(const std::vector<double>& deltas)
{
std::vector<double> coords(deltas.size() + 1);
coords[0] = 0.0;
std::partial_sum(deltas.begin(), deltas.end(), coords.begin() + 1);
return coords;
}
} // anonymous namespace
// Construct tensor grid from deck.
void GridManager::initFromDeckTensorgrid(const Opm::EclipseGridParser& deck)
{
// Extract logical cartesian size.
std::vector<int> dims;
if (deck.hasField("DIMENS")) {
dims = deck.getIntegerValue("DIMENS");
} else if (deck.hasField("SPECGRID")) {
dims = deck.getSPECGRID().dimensions;
} else {
THROW("Deck must have either DIMENS or SPECGRID.");
}
// Extract coordinates (or offsets from top, in case of z).
const std::vector<double>& dxv = deck.getFloatingPointValue("DXV");
const std::vector<double>& dyv = deck.getFloatingPointValue("DYV");
const std::vector<double>& dzv = deck.getFloatingPointValue("DZV");
std::vector<double> x = coordsFromDeltas(dxv);
std::vector<double> y = coordsFromDeltas(dyv);
std::vector<double> z = coordsFromDeltas(dzv);
// Check that number of cells given are consistent with DIMENS/SPECGRID.
if (dims[0] != int(dxv.size())) {
THROW("Number of DXV data points do not match DIMENS or SPECGRID.");
}
if (dims[1] != int(dyv.size())) {
THROW("Number of DYV data points do not match DIMENS or SPECGRID.");
}
if (dims[2] != int(dzv.size())) {
THROW("Number of DZV data points do not match DIMENS or SPECGRID.");
}
// Extract top corner depths, if available.
const double* top_depths = 0;
std::vector<double> top_depths_vec;
if (deck.hasField("DEPTHZ")) {
const std::vector<double>& depthz = deck.getFloatingPointValue("DEPTHZ");
if (depthz.size() != x.size()*y.size()) {
THROW("Incorrect size of DEPTHZ: " << depthz.size());
}
top_depths = &depthz[0];
} else if (deck.hasField("TOPS")) {
// We only support constant values for TOPS.
// It is not 100% clear how we best can deal with
// varying TOPS (stair-stepping grid, or not).
const std::vector<double>& tops = deck.getFloatingPointValue("TOPS");
if (std::count(tops.begin(), tops.end(), tops[0]) != int(tops.size())) {
THROW("We do not support nonuniform TOPS, please use ZCORN/COORDS instead.");
}
top_depths_vec.resize(x.size()*y.size(), tops[0]);
top_depths = &top_depths_vec[0];
}
// Construct grid.
ug_ = create_grid_tensor3d(dxv.size(), dyv.size(), dzv.size(),
&x[0], &y[0], &z[0], top_depths);
if (!ug_) {
THROW("Failed to construct grid.");
}
}
} // namespace Opm