opm-simulators/opm/autodiff/VFPProperties.cpp

424 lines
13 KiB
C++
Raw Normal View History

/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
namespace Opm {
VFPProperties::VFPProperties(DeckKeywordConstPtr table) {
auto iter = table->begin();
auto header = (*iter++);
table_num_ = header->getItem("TABLE")->getInt(0);
datum_depth_ = header->getItem("DATUM_DEPTH")->getRawDouble(0);
//Rate type
try {
std::string flo_string = header->getItem("RATE_TYPE")->getString(0);
if (flo_string == "OIL") {
flo_type_ = FLO_OIL;
}
else if (flo_string == "LIQ") {
flo_type_ = FLO_LIQ;
}
else if (flo_string == "GAS") {
flo_type_ = FLO_GAS;
}
else {
flo_type_ = FLO_INVALID;
}
}
catch (std::invalid_argument& e) {
//TODO: log here
flo_type_ = FLO_INVALID;
}
//Water fraction
try {
std::string wfr_string = header->getItem("WFR")->getString(0);
if (wfr_string == "WOR") {
wfr_type_ = WFR_WOR;
}
else if (wfr_string == "WCT") {
wfr_type_ = WFR_WCT;
}
else if (wfr_string == "WGR") {
wfr_type_ = WFR_WGR;
}
else {
wfr_type_ = WFR_INVALID;
}
}
catch (std::invalid_argument& e) {
//TODO: log here
wfr_type_ = WFR_INVALID;
}
//Gas fraction
try {
std::string gfr_string = header->getItem("GFR")->getString(0);
if (gfr_string == "GOR") {
gfr_type_ = GFR_GOR;
}
else if (gfr_string == "GLR") {
gfr_type_ = GFR_GLR;
}
else if (gfr_string == "OGR") {
gfr_type_ = GFR_OGR;
}
else {
gfr_type_ = GFR_INVALID;
}
}
catch (std::invalid_argument& e) {
//TODO: log here
gfr_type_ = GFR_INVALID;
}
//Artificial lift
try {
std::string alq_string = header->getItem("ALQ")->getString(0);
if (alq_string == "GRAT") {
alq_type_ = ALQ_GRAT;
}
else if (alq_string == "IGLR") {
alq_type_ = ALQ_IGLR;
}
else if (alq_string == "TGLR") {
alq_type_ = ALQ_TGLR;
}
else if (alq_string == "PUMP") {
alq_type_ = ALQ_PUMP;
}
else if (alq_string == "COMP") {
alq_type_ = ALQ_COMP;
}
else if (alq_string == "BEAN") {
alq_type_ = ALQ_BEAN;
}
else if (alq_string == "UNDEF") {
alq_type_ = ALQ_UNDEF;
}
else {
alq_type_ = ALQ_INVALID;
}
}
catch (std::invalid_argument& e) {
//TODO: log here
alq_type_ = ALQ_INVALID;
}
//Get actual rate / flow values
flo_data_ = (*iter++)->getItem("FLOW_VALUES")->getRawDoubleData();
//Get actual tubing head pressure values
thp_data_ = (*iter++)->getItem("THP_VALUES")->getRawDoubleData();
//Get actual water fraction values
wfr_data_ = (*iter++)->getItem("WFR_VALUES")->getRawDoubleData();
//Get actual gas fraction values
gfr_data_ = (*iter++)->getItem("GFR_VALUES")->getRawDoubleData();
//Get actual gas fraction values
alq_data_ = (*iter++)->getItem("ALQ_VALUES")->getRawDoubleData();
//Finally, read the actual table itself.
size_t nt = thp_data_.size();
size_t nw = wfr_data_.size();
size_t ng = gfr_data_.size();
size_t na = alq_data_.size();
size_t nf = flo_data_.size();
extents shape;
shape[0] = nt;
shape[1] = nw;
shape[2] = ng;
shape[3] = na;
shape[4] = nf;
data_.resize(shape);
for (; iter!=table->end(); ++iter) {
//Get indices (subtract 1 to get 0-based index)
int t = (*iter)->getItem("THP_INDEX")->getInt(0) - 1;
int w = (*iter)->getItem("WFR_INDEX")->getInt(0) - 1;
int g = (*iter)->getItem("GFR_INDEX")->getInt(0) - 1;
int a = (*iter)->getItem("ALQ_INDEX")->getInt(0) - 1;
//Rest of values (bottom hole pressure or tubing head temperature) have index of flo value
const std::vector<double>& bhp_tht = (*iter)->getItem("VALUES")->getRawDoubleData();
std::copy(bhp_tht.begin(), bhp_tht.end(), &data_[t][w][g][a][0]);
//Check for large values
for (size_t i = 0; i<bhp_tht.size(); ++i) {
if (bhp_tht[i] > 1.0e10) {
//TODO: Replace with proper log message
std::cerr << "Too large value encountered in VFPPROD in ["
<< t << "," << w << "," << g << "," << a << "]="
<< bhp_tht[i] << std::endl;
}
}
}
}
double VFPProperties::bhp(double flo, double thp, double wfr, double gfr, double alq) {
//First, find the values to interpolate between
auto flo_i = find_interp_data(flo, flo_data_);
auto thp_i = find_interp_data(thp, thp_data_);
auto wfr_i = find_interp_data(wfr, wfr_data_);
auto gfr_i = find_interp_data(gfr, gfr_data_);
auto alq_i = find_interp_data(alq, alq_data_);
//Then perform the interpolation itself
return interpolate(flo_i, thp_i, wfr_i, gfr_i, alq_i);
}
VFPProperties::ADB VFPProperties::bhp(const Wells& wells, ADB qs, ADB thp, ADB alq) {
ADB flo = ADB::null();
ADB wfr = ADB::null();
ADB gfr = ADB::null();
const int np = wells.number_of_phases;
const int nw = wells.number_of_wells;
//Short-hands for water / oil / gas phases
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
switch (flo_type_) {
case FLO_OIL: //Oil = oil phase
//TODO assert("has oil phase")
flo = o;
break;
case FLO_LIQ: //Liquid = water + oil phases
flo = w + o;
break;
case FLO_GAS: //Gas = gas phase
flo = g;
break;
case FLO_INVALID: //Intentional fall-through
default:
//TODO: Log
std::cerr << "ERROR, FLO_INVALID" << std::endl;
}
switch(wfr_type_) {
case WFR_WOR: //Water-oil ratio = water / oil
wfr = w / o;
break;
case WFR_WCT: //Water cut = water / (oil + gas)
wfr = w / (o + g);
break;
case WFR_WGR: //Water-gas ratio = water / gas
wfr = w / g;
break;
case WFR_INVALID: //Intentional fall-through
default:
//TODO: Log
std::cerr << "ERROR, WFR_INVALID" << std::endl;
}
switch(gfr_type_) {
case GFR_GOR: // Gas-oil ratio = gas / oil
gfr = g / o;
break;
case GFR_GLR: // Gas-liquid ratio = gas / (oil + water)
gfr = g / (o + w);
break;
case GFR_OGR: // Oil-gas ratio = oil / gas
gfr = o / g;
break;
case GFR_INVALID: //Intentional fall-through
default:
//TODO: Log
std::cerr << "ERROR, GFR_INVALID" << std::endl;
}
//TODO: What is this actually used for, and how to check?
switch(alq_type_) {
case ALQ_GRAT: //< Lift as injection rate
break;
case ALQ_IGLR: //< Injection gas-liquid ratio
break;
case ALQ_TGLR: //< Total gas-liquid ratio
break;
case ALQ_PUMP: //< Pump rating
break;
case ALQ_COMP: //< Compressor power
break;
case ALQ_BEAN: //< Choke diameter
break;
case ALQ_UNDEF: //< Undefined
break;
case ALQ_INVALID: //Intentional fall-through
default:
//TODO: Log
std::cerr << "ERROR, ALQ_INVALID" << std::endl;
}
//for (int phase = 0; phase < np; ++phase) {
//const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw));
// return bhp(flo, thp, wfr, gfr, alq);
ADB::V f_v = flo.value();
ADB::V t_v = thp.value();
ADB::V w_v = wfr.value();
ADB::V g_v = gfr.value();
ADB::V a_v = alq.value();
//Compute the BHP for each well independently
ADB::V bhp_vals;
bhp_vals.resize(nw);
for (int i=0; i<nw; ++i) {
bhp_vals[i] = bhp(f_v[i], t_v[i], w_v[i], g_v[i], a_v[i]);
}
//Create an ADB constant value.
ADB retval = ADB::constant(bhp_vals);
return retval;
}
VFPProperties::InterpData VFPProperties::find_interp_data(double value, const std::vector<double>& values) {
InterpData retval;
//First element greater than or equal to value
//Start with the second element, so that floor_iter does not go out of range
//Don't access out-of-range, therefore values.end()-1
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
//Find last element smaller than range
auto floor_iter = ceil_iter-1;
//Find the indices
int a = floor_iter - values.begin();
int b = ceil_iter - values.begin();
int max_size = static_cast<int>(values.size())-1;
//Clamp indices to range of vector
retval.ind_[0] = a;
retval.ind_[1] = std::min(b, max_size);
//Find interpolation ratio
double dist = (*ceil_iter - *floor_iter);
assert(dist >= 0.0);
if (dist > 0.0) {
//Possible source for floating point error here if value and floor are large,
//but very close to each other
retval.factor_ = (value-*floor_iter) / dist;
}
else {
retval.factor_ = 1.0;
}
return retval;
}
#ifdef __GNUC__
#pragma GCC push_options
#pragma GCC optimize ("unroll-loops")
#endif
double VFPProperties::interpolate(const InterpData& flo_i, const InterpData& thp_i,
const InterpData& wfr_i, const InterpData& gfr_i, const InterpData& alq_i) {
double nn[2][2][2][2][2];
//Pick out nearest neighbors (nn) to our evaluation point
//This is not really required, but performance-wise it may pay off, since the 32-elements
//we copy to (nn) will fit better in cache than the full original table for the
//interpolation below.
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
for (int f=0; f<=1; ++f) {
//Shorthands for indexing
const int ti = thp_i.ind_[t];
const int wi = wfr_i.ind_[w];
const int gi = gfr_i.ind_[g];
const int ai = alq_i.ind_[a];
const int fi = flo_i.ind_[f];
//Copy element
nn[t][w][g][a][f] = data_[ti][wi][gi][ai][fi];
}
}
}
}
}
//Remove dimensions one by one
// Example: going from 3D to 2D to 1D, we start by interpolating along
// the z axis first, leaving a 2D problem. Then interpolating along the y
// axis, leaving a 1D, problem, etc.
double tf = flo_i.factor_;
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
nn[t][w][g][a][0] = (1.0-tf)*nn[t][w][g][a][0] + tf*nn[t][w][g][a][1];
}
}
}
}
tf = alq_i.factor_;
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
nn[t][w][g][0][0] = (1.0-tf)*nn[t][w][g][0][0] + tf*nn[t][w][g][1][0];
}
}
}
tf = gfr_i.factor_;
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
nn[t][w][0][0][0] = (1.0-tf)*nn[t][w][0][0][0] + tf*nn[t][w][1][0][0];
}
}
tf = wfr_i.factor_;
for (int t=0; t<=1; ++t) {
nn[t][0][0][0][0] = (1.0-tf)*nn[t][0][0][0][0] + tf*nn[t][1][0][0][0];
}
tf = thp_i.factor_;
return (1.0-tf)*nn[0][0][0][0][0] + tf*nn[1][0][0][0][0];
}
#ifdef __GNUC__
#pragma GCC pop_options //unroll loops
#endif
} //Namespace