mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 02:30:18 -06:00
424 lines
13 KiB
C++
424 lines
13 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
namespace Opm {
|
|
|
|
VFPProperties::VFPProperties(DeckKeywordConstPtr table) {
|
|
auto iter = table->begin();
|
|
|
|
auto header = (*iter++);
|
|
table_num_ = header->getItem("TABLE")->getInt(0);
|
|
datum_depth_ = header->getItem("DATUM_DEPTH")->getRawDouble(0);
|
|
|
|
//Rate type
|
|
try {
|
|
std::string flo_string = header->getItem("RATE_TYPE")->getString(0);
|
|
if (flo_string == "OIL") {
|
|
flo_type_ = FLO_OIL;
|
|
}
|
|
else if (flo_string == "LIQ") {
|
|
flo_type_ = FLO_LIQ;
|
|
}
|
|
else if (flo_string == "GAS") {
|
|
flo_type_ = FLO_GAS;
|
|
}
|
|
else {
|
|
flo_type_ = FLO_INVALID;
|
|
}
|
|
}
|
|
catch (std::invalid_argument& e) {
|
|
//TODO: log here
|
|
flo_type_ = FLO_INVALID;
|
|
}
|
|
|
|
//Water fraction
|
|
try {
|
|
std::string wfr_string = header->getItem("WFR")->getString(0);
|
|
if (wfr_string == "WOR") {
|
|
wfr_type_ = WFR_WOR;
|
|
}
|
|
else if (wfr_string == "WCT") {
|
|
wfr_type_ = WFR_WCT;
|
|
}
|
|
else if (wfr_string == "WGR") {
|
|
wfr_type_ = WFR_WGR;
|
|
}
|
|
else {
|
|
wfr_type_ = WFR_INVALID;
|
|
}
|
|
}
|
|
catch (std::invalid_argument& e) {
|
|
//TODO: log here
|
|
wfr_type_ = WFR_INVALID;
|
|
}
|
|
|
|
//Gas fraction
|
|
try {
|
|
std::string gfr_string = header->getItem("GFR")->getString(0);
|
|
if (gfr_string == "GOR") {
|
|
gfr_type_ = GFR_GOR;
|
|
}
|
|
else if (gfr_string == "GLR") {
|
|
gfr_type_ = GFR_GLR;
|
|
}
|
|
else if (gfr_string == "OGR") {
|
|
gfr_type_ = GFR_OGR;
|
|
}
|
|
else {
|
|
gfr_type_ = GFR_INVALID;
|
|
}
|
|
}
|
|
catch (std::invalid_argument& e) {
|
|
//TODO: log here
|
|
gfr_type_ = GFR_INVALID;
|
|
}
|
|
|
|
//Artificial lift
|
|
try {
|
|
std::string alq_string = header->getItem("ALQ")->getString(0);
|
|
if (alq_string == "GRAT") {
|
|
alq_type_ = ALQ_GRAT;
|
|
}
|
|
else if (alq_string == "IGLR") {
|
|
alq_type_ = ALQ_IGLR;
|
|
}
|
|
else if (alq_string == "TGLR") {
|
|
alq_type_ = ALQ_TGLR;
|
|
}
|
|
else if (alq_string == "PUMP") {
|
|
alq_type_ = ALQ_PUMP;
|
|
}
|
|
else if (alq_string == "COMP") {
|
|
alq_type_ = ALQ_COMP;
|
|
}
|
|
else if (alq_string == "BEAN") {
|
|
alq_type_ = ALQ_BEAN;
|
|
}
|
|
else if (alq_string == "UNDEF") {
|
|
alq_type_ = ALQ_UNDEF;
|
|
}
|
|
else {
|
|
alq_type_ = ALQ_INVALID;
|
|
}
|
|
}
|
|
catch (std::invalid_argument& e) {
|
|
//TODO: log here
|
|
alq_type_ = ALQ_INVALID;
|
|
}
|
|
|
|
//Get actual rate / flow values
|
|
flo_data_ = (*iter++)->getItem("FLOW_VALUES")->getRawDoubleData();
|
|
|
|
//Get actual tubing head pressure values
|
|
thp_data_ = (*iter++)->getItem("THP_VALUES")->getRawDoubleData();
|
|
|
|
//Get actual water fraction values
|
|
wfr_data_ = (*iter++)->getItem("WFR_VALUES")->getRawDoubleData();
|
|
|
|
//Get actual gas fraction values
|
|
gfr_data_ = (*iter++)->getItem("GFR_VALUES")->getRawDoubleData();
|
|
|
|
//Get actual gas fraction values
|
|
alq_data_ = (*iter++)->getItem("ALQ_VALUES")->getRawDoubleData();
|
|
|
|
//Finally, read the actual table itself.
|
|
size_t nt = thp_data_.size();
|
|
size_t nw = wfr_data_.size();
|
|
size_t ng = gfr_data_.size();
|
|
size_t na = alq_data_.size();
|
|
size_t nf = flo_data_.size();
|
|
extents shape;
|
|
shape[0] = nt;
|
|
shape[1] = nw;
|
|
shape[2] = ng;
|
|
shape[3] = na;
|
|
shape[4] = nf;
|
|
data_.resize(shape);
|
|
|
|
for (; iter!=table->end(); ++iter) {
|
|
//Get indices (subtract 1 to get 0-based index)
|
|
int t = (*iter)->getItem("THP_INDEX")->getInt(0) - 1;
|
|
int w = (*iter)->getItem("WFR_INDEX")->getInt(0) - 1;
|
|
int g = (*iter)->getItem("GFR_INDEX")->getInt(0) - 1;
|
|
int a = (*iter)->getItem("ALQ_INDEX")->getInt(0) - 1;
|
|
|
|
//Rest of values (bottom hole pressure or tubing head temperature) have index of flo value
|
|
const std::vector<double>& bhp_tht = (*iter)->getItem("VALUES")->getRawDoubleData();
|
|
std::copy(bhp_tht.begin(), bhp_tht.end(), &data_[t][w][g][a][0]);
|
|
|
|
//Check for large values
|
|
for (size_t i = 0; i<bhp_tht.size(); ++i) {
|
|
if (bhp_tht[i] > 1.0e10) {
|
|
//TODO: Replace with proper log message
|
|
std::cerr << "Too large value encountered in VFPPROD in ["
|
|
<< t << "," << w << "," << g << "," << a << "]="
|
|
<< bhp_tht[i] << std::endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
double VFPProperties::bhp(double flo, double thp, double wfr, double gfr, double alq) {
|
|
//First, find the values to interpolate between
|
|
auto flo_i = find_interp_data(flo, flo_data_);
|
|
auto thp_i = find_interp_data(thp, thp_data_);
|
|
auto wfr_i = find_interp_data(wfr, wfr_data_);
|
|
auto gfr_i = find_interp_data(gfr, gfr_data_);
|
|
auto alq_i = find_interp_data(alq, alq_data_);
|
|
|
|
//Then perform the interpolation itself
|
|
return interpolate(flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
}
|
|
|
|
|
|
|
|
VFPProperties::ADB VFPProperties::bhp(const Wells& wells, ADB qs, ADB thp, ADB alq) {
|
|
ADB flo = ADB::null();
|
|
ADB wfr = ADB::null();
|
|
ADB gfr = ADB::null();
|
|
|
|
const int np = wells.number_of_phases;
|
|
const int nw = wells.number_of_wells;
|
|
|
|
//Short-hands for water / oil / gas phases
|
|
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
|
|
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
|
|
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
|
|
|
|
switch (flo_type_) {
|
|
case FLO_OIL: //Oil = oil phase
|
|
//TODO assert("has oil phase")
|
|
flo = o;
|
|
break;
|
|
case FLO_LIQ: //Liquid = water + oil phases
|
|
flo = w + o;
|
|
break;
|
|
case FLO_GAS: //Gas = gas phase
|
|
flo = g;
|
|
break;
|
|
case FLO_INVALID: //Intentional fall-through
|
|
default:
|
|
//TODO: Log
|
|
std::cerr << "ERROR, FLO_INVALID" << std::endl;
|
|
}
|
|
|
|
switch(wfr_type_) {
|
|
case WFR_WOR: //Water-oil ratio = water / oil
|
|
wfr = w / o;
|
|
break;
|
|
case WFR_WCT: //Water cut = water / (oil + gas)
|
|
wfr = w / (o + g);
|
|
break;
|
|
case WFR_WGR: //Water-gas ratio = water / gas
|
|
wfr = w / g;
|
|
break;
|
|
case WFR_INVALID: //Intentional fall-through
|
|
default:
|
|
//TODO: Log
|
|
std::cerr << "ERROR, WFR_INVALID" << std::endl;
|
|
}
|
|
|
|
switch(gfr_type_) {
|
|
case GFR_GOR: // Gas-oil ratio = gas / oil
|
|
gfr = g / o;
|
|
break;
|
|
case GFR_GLR: // Gas-liquid ratio = gas / (oil + water)
|
|
gfr = g / (o + w);
|
|
break;
|
|
case GFR_OGR: // Oil-gas ratio = oil / gas
|
|
gfr = o / g;
|
|
break;
|
|
case GFR_INVALID: //Intentional fall-through
|
|
default:
|
|
//TODO: Log
|
|
std::cerr << "ERROR, GFR_INVALID" << std::endl;
|
|
}
|
|
|
|
//TODO: What is this actually used for, and how to check?
|
|
switch(alq_type_) {
|
|
case ALQ_GRAT: //< Lift as injection rate
|
|
break;
|
|
case ALQ_IGLR: //< Injection gas-liquid ratio
|
|
break;
|
|
case ALQ_TGLR: //< Total gas-liquid ratio
|
|
break;
|
|
case ALQ_PUMP: //< Pump rating
|
|
break;
|
|
case ALQ_COMP: //< Compressor power
|
|
break;
|
|
case ALQ_BEAN: //< Choke diameter
|
|
break;
|
|
case ALQ_UNDEF: //< Undefined
|
|
break;
|
|
case ALQ_INVALID: //Intentional fall-through
|
|
default:
|
|
//TODO: Log
|
|
std::cerr << "ERROR, ALQ_INVALID" << std::endl;
|
|
}
|
|
|
|
//for (int phase = 0; phase < np; ++phase) {
|
|
//const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw));
|
|
// return bhp(flo, thp, wfr, gfr, alq);
|
|
ADB::V f_v = flo.value();
|
|
ADB::V t_v = thp.value();
|
|
ADB::V w_v = wfr.value();
|
|
ADB::V g_v = gfr.value();
|
|
ADB::V a_v = alq.value();
|
|
|
|
//Compute the BHP for each well independently
|
|
ADB::V bhp_vals;
|
|
bhp_vals.resize(nw);
|
|
for (int i=0; i<nw; ++i) {
|
|
bhp_vals[i] = bhp(f_v[i], t_v[i], w_v[i], g_v[i], a_v[i]);
|
|
}
|
|
//Create an ADB constant value.
|
|
ADB retval = ADB::constant(bhp_vals);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
VFPProperties::InterpData VFPProperties::find_interp_data(double value, const std::vector<double>& values) {
|
|
InterpData retval;
|
|
|
|
//First element greater than or equal to value
|
|
//Start with the second element, so that floor_iter does not go out of range
|
|
//Don't access out-of-range, therefore values.end()-1
|
|
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
|
|
|
|
//Find last element smaller than range
|
|
auto floor_iter = ceil_iter-1;
|
|
|
|
//Find the indices
|
|
int a = floor_iter - values.begin();
|
|
int b = ceil_iter - values.begin();
|
|
int max_size = static_cast<int>(values.size())-1;
|
|
|
|
//Clamp indices to range of vector
|
|
retval.ind_[0] = a;
|
|
retval.ind_[1] = std::min(b, max_size);
|
|
|
|
//Find interpolation ratio
|
|
double dist = (*ceil_iter - *floor_iter);
|
|
assert(dist >= 0.0);
|
|
if (dist > 0.0) {
|
|
//Possible source for floating point error here if value and floor are large,
|
|
//but very close to each other
|
|
retval.factor_ = (value-*floor_iter) / dist;
|
|
}
|
|
else {
|
|
retval.factor_ = 1.0;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("unroll-loops")
|
|
#endif
|
|
|
|
double VFPProperties::interpolate(const InterpData& flo_i, const InterpData& thp_i,
|
|
const InterpData& wfr_i, const InterpData& gfr_i, const InterpData& alq_i) {
|
|
double nn[2][2][2][2][2];
|
|
|
|
//Pick out nearest neighbors (nn) to our evaluation point
|
|
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
|
//we copy to (nn) will fit better in cache than the full original table for the
|
|
//interpolation below.
|
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
for (int f=0; f<=1; ++f) {
|
|
//Shorthands for indexing
|
|
const int ti = thp_i.ind_[t];
|
|
const int wi = wfr_i.ind_[w];
|
|
const int gi = gfr_i.ind_[g];
|
|
const int ai = alq_i.ind_[a];
|
|
const int fi = flo_i.ind_[f];
|
|
|
|
//Copy element
|
|
nn[t][w][g][a][f] = data_[ti][wi][gi][ai][fi];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Remove dimensions one by one
|
|
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
|
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
|
// axis, leaving a 1D, problem, etc.
|
|
double tf = flo_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
nn[t][w][g][a][0] = (1.0-tf)*nn[t][w][g][a][0] + tf*nn[t][w][g][a][1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
tf = alq_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
nn[t][w][g][0][0] = (1.0-tf)*nn[t][w][g][0][0] + tf*nn[t][w][g][1][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
tf = gfr_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
nn[t][w][0][0][0] = (1.0-tf)*nn[t][w][0][0][0] + tf*nn[t][w][1][0][0];
|
|
}
|
|
}
|
|
|
|
tf = wfr_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
nn[t][0][0][0][0] = (1.0-tf)*nn[t][0][0][0][0] + tf*nn[t][1][0][0][0];
|
|
}
|
|
|
|
tf = thp_i.factor_;
|
|
return (1.0-tf)*nn[0][0][0][0][0] + tf*nn[1][0][0][0][0];
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC pop_options //unroll loops
|
|
#endif
|
|
|
|
|
|
} //Namespace
|