opm-simulators/tests/test_wellmodel.cpp

193 lines
7.0 KiB
C++
Raw Normal View History

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE WellModelTest
#include <chrono>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <boost/test/unit_test.hpp>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
2017-10-29 15:06:19 -05:00
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/parser/eclipse/Python/Python.hpp>
#include <opm/grid/GridManager.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/common/utility/TimeService.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/grid/GridHelpers.hpp>
#include <opm/simulators/flow/FlowMainEbos.hpp>
#include <opm/simulators/flow/BlackoilModelEbos.hpp>
#include <ebos/eclproblem.hh>
#include <opm/models/utils/start.hh>
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/BlackoilWellModel.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
2020-08-21 06:59:53 -05:00
using StandardWell = Opm::StandardWell<Opm::Properties::TTag::EclFlowProblem>;
struct SetupTest {
using Grid = UnstructuredGrid;
SetupTest ()
{
Opm::Parser parser;
2019-01-07 03:22:47 -06:00
auto deck = parser.parseFile("TESTWELLMODEL.DATA");
ecl_state.reset(new Opm::EclipseState(deck) );
2017-10-29 15:06:19 -05:00
{
const Opm::TableManager table ( deck );
2018-10-17 06:34:20 -05:00
const Opm::Runspec runspec (deck);
python = std::make_shared<Opm::Python>();
schedule.reset( new Opm::Schedule(deck, *ecl_state, python));
summaryState.reset( new Opm::SummaryState(Opm::TimeService::from_time_t(schedule->getStartTime())));
2017-10-29 15:06:19 -05:00
}
current_timestep = 0;
};
std::unique_ptr<const Opm::EclipseState> ecl_state;
std::shared_ptr<Opm::Python> python;
2017-10-29 15:06:19 -05:00
std::unique_ptr<const Opm::Schedule> schedule;
std::unique_ptr<Opm::SummaryState> summaryState;
2019-10-23 02:09:45 -05:00
std::vector<std::vector<Opm::PerforationData>> well_perf_data;
int current_timestep;
};
struct GlobalFixture {
GlobalFixture()
{
int argcDummy = 1;
const char *tmp[] = {"test_wellmodel"};
char **argvDummy = const_cast<char**>(tmp);
// MPI setup.
#if HAVE_DUNE_FEM
Dune::Fem::MPIManager::initialize(argcDummy, argvDummy);
#else
Dune::MPIHelper::instance(argcDummy, argvDummy);
#endif
2020-08-21 06:59:53 -05:00
Opm::FlowMainEbos<Opm::Properties::TTag::EclFlowProblem>::setupParameters_(argcDummy, argvDummy);
}
};
BOOST_GLOBAL_FIXTURE(GlobalFixture);
BOOST_AUTO_TEST_CASE(TestStandardWellInput) {
const SetupTest setup_test;
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
BOOST_CHECK_EQUAL( wells_ecl.size(), 2);
const Opm::Well& well = wells_ecl[1];
2020-08-21 06:59:53 -05:00
const Opm::BlackoilModelParametersEbos<Opm::Properties::TTag::EclFlowProblem> param;
// For the conversion between the surface volume rate and resrevoir voidage rate
typedef Opm::BlackOilFluidSystem<double> FluidSystem;
using RateConverterType = Opm::RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
// Compute reservoir volumes for RESV controls.
Opm::PhaseUsage phaseUsage;
std::unique_ptr<RateConverterType> rateConverter;
// Compute reservoir volumes for RESV controls.
rateConverter.reset(new RateConverterType (phaseUsage,
std::vector<int>(10, 0)));
2019-10-23 02:09:45 -05:00
Opm::PerforationData dummy;
std::vector<Opm::PerforationData> pdata(well.getConnections().size(), dummy);
for (auto c = 0*pdata.size(); c < pdata.size(); ++c) {
pdata[c].ecl_index = c;
}
Opm::ParallelWellInfo pinfo{well.name()};
BOOST_CHECK_THROW( StandardWell( well, pinfo, -1, param, *rateConverter, 0, 3, 3, 0, pdata), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(TestBehavoir) {
const SetupTest setup_test;
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
const int current_timestep = setup_test.current_timestep;
std::vector<std::unique_ptr<const StandardWell> > wells;
{
2019-10-23 02:09:45 -05:00
const int nw = wells_ecl.size();
2020-08-21 06:59:53 -05:00
const Opm::BlackoilModelParametersEbos<Opm::Properties::TTag::EclFlowProblem> param;
for (int w = 0; w < nw; ++w) {
// For the conversion between the surface volume rate and resrevoir voidage rate
typedef Opm::BlackOilFluidSystem<double> FluidSystem;
using RateConverterType = Opm::RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
// Compute reservoir volumes for RESV controls.
// TODO: not sure why for this class the initlizer list does not work
// otherwise we should make a meaningful const PhaseUsage here.
Opm::PhaseUsage phaseUsage;
std::unique_ptr<RateConverterType> rateConverter;
// Compute reservoir volumes for RESV controls.
rateConverter.reset(new RateConverterType (phaseUsage,
std::vector<int>(10, 0)));
2019-10-23 02:09:45 -05:00
Opm::PerforationData dummy;
std::vector<Opm::PerforationData> pdata(wells_ecl[w].getConnections().size(), dummy);
for (auto c = 0*pdata.size(); c < pdata.size(); ++c) {
pdata[c].ecl_index = c;
}
Opm::ParallelWellInfo pinfo{wells_ecl[w].name()};
wells.emplace_back(new StandardWell(wells_ecl[w], pinfo, current_timestep, param, *rateConverter, 0, 3, 3, w, pdata) );
}
}
// first well, it is a production well from the deck
{
const auto& well = wells[0];
BOOST_CHECK_EQUAL(well->name(), "PROD1");
2019-10-23 02:09:45 -05:00
BOOST_CHECK(well->isProducer());
BOOST_CHECK(StandardWell::Indices::numEq == 3);
2019-03-25 06:52:34 -05:00
BOOST_CHECK(well->numStaticWellEq== 4);
}
// second well, it is the injection well from the deck
{
const auto& well = wells[1];
BOOST_CHECK_EQUAL(well->name(), "INJE1");
2019-10-23 02:09:45 -05:00
BOOST_CHECK(well->isInjector());
BOOST_CHECK(StandardWell::Indices::numEq == 3);
BOOST_CHECK(well->numStaticWellEq== 4);
}
}