opm-simulators/tests/test_wellmodel.cpp
Arne Morten Kvarving 2b1ac22c99 drop aliases for Indices entries
using Indices directly more clearly shows where the data comes
from without having to hop through hoops to do so.
2021-09-06 12:49:01 +02:00

193 lines
7.0 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE WellModelTest
#include <chrono>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <boost/test/unit_test.hpp>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/parser/eclipse/Python/Python.hpp>
#include <opm/grid/GridManager.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/common/utility/TimeService.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/grid/GridHelpers.hpp>
#include <opm/simulators/flow/FlowMainEbos.hpp>
#include <opm/simulators/flow/BlackoilModelEbos.hpp>
#include <ebos/eclproblem.hh>
#include <opm/models/utils/start.hh>
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/BlackoilWellModel.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
using StandardWell = Opm::StandardWell<Opm::Properties::TTag::EclFlowProblem>;
struct SetupTest {
using Grid = UnstructuredGrid;
SetupTest ()
{
Opm::Parser parser;
auto deck = parser.parseFile("TESTWELLMODEL.DATA");
ecl_state.reset(new Opm::EclipseState(deck) );
{
const Opm::TableManager table ( deck );
const Opm::Runspec runspec (deck);
python = std::make_shared<Opm::Python>();
schedule.reset( new Opm::Schedule(deck, *ecl_state, python));
summaryState.reset( new Opm::SummaryState(Opm::TimeService::from_time_t(schedule->getStartTime())));
}
current_timestep = 0;
};
std::unique_ptr<const Opm::EclipseState> ecl_state;
std::shared_ptr<Opm::Python> python;
std::unique_ptr<const Opm::Schedule> schedule;
std::unique_ptr<Opm::SummaryState> summaryState;
std::vector<std::vector<Opm::PerforationData>> well_perf_data;
int current_timestep;
};
struct GlobalFixture {
GlobalFixture()
{
int argcDummy = 1;
const char *tmp[] = {"test_wellmodel"};
char **argvDummy = const_cast<char**>(tmp);
// MPI setup.
#if HAVE_DUNE_FEM
Dune::Fem::MPIManager::initialize(argcDummy, argvDummy);
#else
Dune::MPIHelper::instance(argcDummy, argvDummy);
#endif
Opm::FlowMainEbos<Opm::Properties::TTag::EclFlowProblem>::setupParameters_(argcDummy, argvDummy);
}
};
BOOST_GLOBAL_FIXTURE(GlobalFixture);
BOOST_AUTO_TEST_CASE(TestStandardWellInput) {
const SetupTest setup_test;
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
BOOST_CHECK_EQUAL( wells_ecl.size(), 2);
const Opm::Well& well = wells_ecl[1];
const Opm::BlackoilModelParametersEbos<Opm::Properties::TTag::EclFlowProblem> param;
// For the conversion between the surface volume rate and resrevoir voidage rate
typedef Opm::BlackOilFluidSystem<double> FluidSystem;
using RateConverterType = Opm::RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
// Compute reservoir volumes for RESV controls.
Opm::PhaseUsage phaseUsage;
std::unique_ptr<RateConverterType> rateConverter;
// Compute reservoir volumes for RESV controls.
rateConverter.reset(new RateConverterType (phaseUsage,
std::vector<int>(10, 0)));
Opm::PerforationData dummy;
std::vector<Opm::PerforationData> pdata(well.getConnections().size(), dummy);
for (auto c = 0*pdata.size(); c < pdata.size(); ++c) {
pdata[c].ecl_index = c;
}
Opm::ParallelWellInfo pinfo{well.name()};
BOOST_CHECK_THROW( StandardWell( well, pinfo, -1, param, *rateConverter, 0, 3, 3, 0, pdata), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(TestBehavoir) {
const SetupTest setup_test;
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
const int current_timestep = setup_test.current_timestep;
std::vector<std::unique_ptr<const StandardWell> > wells;
{
const int nw = wells_ecl.size();
const Opm::BlackoilModelParametersEbos<Opm::Properties::TTag::EclFlowProblem> param;
for (int w = 0; w < nw; ++w) {
// For the conversion between the surface volume rate and resrevoir voidage rate
typedef Opm::BlackOilFluidSystem<double> FluidSystem;
using RateConverterType = Opm::RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
// Compute reservoir volumes for RESV controls.
// TODO: not sure why for this class the initlizer list does not work
// otherwise we should make a meaningful const PhaseUsage here.
Opm::PhaseUsage phaseUsage;
std::unique_ptr<RateConverterType> rateConverter;
// Compute reservoir volumes for RESV controls.
rateConverter.reset(new RateConverterType (phaseUsage,
std::vector<int>(10, 0)));
Opm::PerforationData dummy;
std::vector<Opm::PerforationData> pdata(wells_ecl[w].getConnections().size(), dummy);
for (auto c = 0*pdata.size(); c < pdata.size(); ++c) {
pdata[c].ecl_index = c;
}
Opm::ParallelWellInfo pinfo{wells_ecl[w].name()};
wells.emplace_back(new StandardWell(wells_ecl[w], pinfo, current_timestep, param, *rateConverter, 0, 3, 3, w, pdata) );
}
}
// first well, it is a production well from the deck
{
const auto& well = wells[0];
BOOST_CHECK_EQUAL(well->name(), "PROD1");
BOOST_CHECK(well->isProducer());
BOOST_CHECK(StandardWell::Indices::numEq == 3);
BOOST_CHECK(well->numStaticWellEq== 4);
}
// second well, it is the injection well from the deck
{
const auto& well = wells[1];
BOOST_CHECK_EQUAL(well->name(), "INJE1");
BOOST_CHECK(well->isInjector());
BOOST_CHECK(StandardWell::Indices::numEq == 3);
BOOST_CHECK(well->numStaticWellEq== 4);
}
}