opm-simulators/opm/core/wells/WellsManager_impl.hpp

380 lines
14 KiB
C++
Raw Normal View History

#include <opm/core/utility/Units.hpp>
#include <opm/core/grid/GridHelpers.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <algorithm>
#include <array>
#include <cstddef>
#include <exception>
#include <iterator>
namespace WellsManagerDetail
{
namespace ProductionControl
{
enum Mode { ORAT, WRAT, GRAT,
LRAT, CRAT, RESV,
BHP , THP , GRUP };
/*
namespace Details {
std::map<std::string, Mode>
init_mode_map();
} // namespace Details
*/
Mode mode(const std::string& control);
Mode mode(Opm::WellProducer::ControlModeEnum controlMode);
} // namespace ProductionControl
namespace InjectionControl
{
enum Mode { RATE, RESV, BHP,
THP, GRUP };
/*
namespace Details {
std::map<std::string, Mode>
init_mode_map();
} // namespace Details
*/
Mode mode(const std::string& control);
Mode mode(Opm::WellInjector::ControlModeEnum controlMode);
} // namespace InjectionControl
double computeWellIndex(const double radius,
const std::array<double, 3>& cubical,
const double* cell_permeability,
const double skin_factor,
2015-01-12 05:41:56 -06:00
const Opm::WellCompletion::DirectionEnum direction,
const double ntg);
template <int dim, class C2F, class FC>
std::array<double, dim>
getCubeDim(const C2F& c2f,
FC begin_face_centroids,
int cell)
{
std::array< std::vector<double>, dim > X;
{
const std::vector<double>::size_type
nf = std::distance(c2f[cell].begin(),
c2f[cell].end ());
for (int d = 0; d < dim; ++d) {
X[d].reserve(nf);
}
}
typedef typename C2F::row_type::const_iterator FI;
for (FI f = c2f[cell].begin(), e = c2f[cell].end(); f != e; ++f) {
using Opm::UgGridHelpers::increment;
using Opm::UgGridHelpers::getCoordinate;
const FC& fc = increment(begin_face_centroids, *f, dim);
for (int d = 0; d < dim; ++d) {
X[d].push_back(getCoordinate(fc, d));
}
}
std::array<double, dim> cube;
for (int d = 0; d < dim; ++d) {
typedef std::vector<double>::iterator VI;
typedef std::pair<VI,VI> PVI;
const PVI m = std::minmax_element(X[d].begin(), X[d].end());
cube[d] = *m.second - *m.first;
}
return cube;
}
} // end namespace WellsManagerDetail
namespace Opm
{
template<class C2F, class CC, class FC, class NTG>
void WellsManager::createWellsFromSpecs(std::vector<WellConstPtr>& wells, size_t timeStep,
2015-01-12 05:13:53 -06:00
const C2F& c2f,
const int* cart_dims,
2015-01-12 05:13:53 -06:00
FC begin_face_centroids,
CC begin_cell_centroids,
int dimensions,
std::vector<std::string>& well_names,
std::vector<WellData>& well_data,
std::map<std::string, int>& well_names_to_index,
const PhaseUsage& phaseUsage,
const std::map<int,int>& cartesian_to_compressed,
const double* permeability,
const NTG& ntg)
{
if (dimensions != 3) {
OPM_THROW(std::domain_error,
"WellsManager::createWellsFromSpecs() only "
"supported in three space dimensions");
}
std::vector<std::vector<PerfData> > wellperf_data;
wellperf_data.resize(wells.size());
int well_index = 0;
for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter) {
WellConstPtr well = (*wellIter);
if (well->getStatus(timeStep) == WellCommon::SHUT) {
continue;
}
{ // WELSPECS handling
well_names_to_index[well->name()] = well_index;
well_names.push_back(well->name());
{
WellData wd;
wd.reference_bhp_depth = well->getRefDepth();
wd.welspecsline = -1;
if (well->isInjector( timeStep ))
wd.type = INJECTOR;
else
wd.type = PRODUCER;
well_data.push_back(wd);
}
}
{ // COMPDAT handling
CompletionSetConstPtr completionSet = well->getCompletions(timeStep);
for (size_t c=0; c<completionSet->size(); c++) {
CompletionConstPtr completion = completionSet->get(c);
if (completion->getState() == WellCompletion::OPEN) {
int i = completion->getI();
int j = completion->getJ();
int k = completion->getK();
const int* cpgdim = cart_dims;
int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
if (cgit == cartesian_to_compressed.end()) {
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
<< k << " not found in grid (well = " << well->name() << ')');
}
int cell = cgit->second;
PerfData pd;
pd.cell = cell;
{
const Value<double>& transmissibilityFactor = completion->getConnectionTransmissibilityFactorAsValueObject();
if (transmissibilityFactor.hasValue()) {
pd.well_index = transmissibilityFactor.getValue();
} else {
double radius = 0.5*completion->getDiameter();
if (radius <= 0.0) {
radius = 0.5*unit::feet;
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
}
const std::array<double, 3> cubical =
WellsManagerDetail::getCubeDim<3>(c2f, begin_face_centroids, cell);
const double* cell_perm = &permeability[dimensions*dimensions*cell];
pd.well_index =
WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm,
completion->getSkinFactor(),
completion->getDirection(),
ntg[cell]);
}
}
wellperf_data[well_index].push_back(pd);
} else {
if (completion->getState() != WellCompletion::SHUT) {
OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion->getState() ) << " not handled");
}
}
}
}
well_index++;
}
// Set up reference depths that were defaulted. Count perfs.
const int num_wells = well_data.size();
int num_perfs = 0;
assert (dimensions == 3);
for (int w = 0; w < num_wells; ++w) {
num_perfs += wellperf_data[w].size();
}
// Create the well data structures.
w_ = create_wells(phaseUsage.num_phases, num_wells, num_perfs);
if (!w_) {
OPM_THROW(std::runtime_error, "Failed creating Wells struct.");
}
// Add wells.
for (int w = 0; w < num_wells; ++w) {
const int w_num_perf = wellperf_data[w].size();
std::vector<int> perf_cells (w_num_perf);
std::vector<double> perf_prodind(w_num_perf);
for (int perf = 0; perf < w_num_perf; ++perf) {
perf_cells [perf] = wellperf_data[w][perf].cell;
perf_prodind[perf] = wellperf_data[w][perf].well_index;
}
const double* comp_frac = NULL;
// We initialize all wells with a null component fraction,
// and must (for injection wells) overwrite it later.
const int ok =
add_well(well_data[w].type,
well_data[w].reference_bhp_depth,
w_num_perf,
comp_frac,
& perf_cells [0],
& perf_prodind[0],
well_names[w].c_str(),
w_);
if (!ok) {
OPM_THROW(std::runtime_error,
"Failed adding well "
<< well_names[w]
<< " to Wells data structure.");
}
}
}
template <class CC, class C2F, class FC>
WellsManager::
WellsManager(const Opm::EclipseStateConstPtr eclipseState,
const size_t timeStep,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
int dimensions,
CC begin_cell_centroids,
const C2F& cell_to_faces,
FC begin_face_centroids,
const double* permeability)
: w_(0)
{
init(eclipseState, timeStep, number_of_cells, global_cell,
cart_dims, dimensions, begin_cell_centroids,
cell_to_faces, begin_face_centroids, permeability);
}
/// Construct wells from deck.
template <class CC, class C2F, class FC>
void
WellsManager::init(const Opm::EclipseStateConstPtr eclipseState,
const size_t timeStep,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
int dimensions,
CC begin_cell_centroids,
const C2F& cell_to_faces,
FC begin_face_centroids,
const double* permeability)
{
if (dimensions != 3) {
OPM_THROW(std::runtime_error,
"We cannot initialize wells from a deck unless "
"the corresponding grid is 3-dimensional.");
}
if (eclipseState->getSchedule()->numWells() == 0) {
OPM_MESSAGE("No wells specified in Schedule section, "
"initializing no wells");
return;
}
std::map<int,int> cartesian_to_compressed;
setupCompressedToCartesian(global_cell, number_of_cells,
cartesian_to_compressed);
// Obtain phase usage data.
PhaseUsage pu = phaseUsageFromDeck(eclipseState);
// These data structures will be filled in this constructor,
// then used to initialize the Wells struct.
std::vector<std::string> well_names;
std::vector<WellData> well_data;
// For easy lookup:
std::map<std::string, int> well_names_to_index;
ScheduleConstPtr schedule = eclipseState->getSchedule();
std::vector<WellConstPtr> wells = schedule->getWells(timeStep);
well_names.reserve(wells.size());
well_data.reserve(wells.size());
typedef GridPropertyAccess::ArrayPolicy::ExtractFromDeck<double> DoubleArray;
typedef GridPropertyAccess::Compressed<DoubleArray, GridPropertyAccess::Tag::NTG> NTGArray;
DoubleArray ntg_glob(eclipseState, "NTG", 1.0);
NTGArray ntg(ntg_glob, global_cell);
createWellsFromSpecs(wells, timeStep, cell_to_faces,
cart_dims,
begin_face_centroids,
begin_cell_centroids,
dimensions,
well_names, well_data, well_names_to_index,
pu, cartesian_to_compressed, permeability, ntg);
setupWellControls(wells, timeStep, well_names, pu);
{
GroupTreeNodeConstPtr fieldNode =
schedule->getGroupTree(timeStep)->getNode("FIELD");
GroupConstPtr fieldGroup =
schedule->getGroup(fieldNode->name());
well_collection_.addField(fieldGroup, timeStep, pu);
addChildGroups(fieldNode, schedule, timeStep, pu);
}
for (auto w = wells.begin(), e = wells.end(); w != e; ++w) {
well_collection_.addWell(*w, timeStep, pu);
}
well_collection_.setWellsPointer(w_);
well_collection_.applyGroupControls();
setupGuideRates(wells, timeStep, well_data, well_names_to_index);
// Debug output.
#define EXTRA_OUTPUT
#ifdef EXTRA_OUTPUT
/*
std::cout << "\t WELL DATA" << std::endl;
for(int i = 0; i< num_wells; ++i) {
std::cout << i << ": " << well_data[i].type << " "
<< well_data[i].control << " " << well_data[i].target
<< std::endl;
}
std::cout << "\n\t PERF DATA" << std::endl;
for(int i=0; i< int(wellperf_data.size()); ++i) {
for(int j=0; j< int(wellperf_data[i].size()); ++j) {
std::cout << i << ": " << wellperf_data[i][j].cell << " "
<< wellperf_data[i][j].well_index << std::endl;
}
}
*/
#endif
}
} // end namespace Opm