opm-simulators/opm/autodiff/MultisegmentWells_impl.hpp

1159 lines
52 KiB
C++
Raw Normal View History

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED
namespace Opm
{
namespace wellhelpers {
using ADB = MultisegmentWells::ADB;
using Vector = MultisegmentWells::Vector;
inline
ADB onlyWellDerivs(const ADB& x)
{
Vector val = x.value();
const int nb = x.numBlocks();
if (nb < 2) {
OPM_THROW(std::logic_error, "Called onlyWellDerivs() with argument that has " << nb << " blocks.");
}
std::vector<ADB::M> derivs = { x.derivative()[nb - 2], x.derivative()[nb - 1] };
return ADB::function(std::move(val), std::move(derivs));
}
}
template <class ReservoirResidualQuant, class SolutionState>
void
MultisegmentWells::
extractWellPerfProperties(const SolutionState& /* state */,
const std::vector<ReservoirResidualQuant>& rq,
std::vector<ADB>& mob_perfcells,
std::vector<ADB>& b_perfcells) const
{
// If we have wells, extract the mobilities and b-factors for
// the well-perforated cells.
if ( !localWellsActive() ) {
mob_perfcells.clear();
b_perfcells.clear();
return;
} else {
const std::vector<int>& well_cells = wellOps().well_cells;
mob_perfcells.resize(num_phases_, ADB::null());
b_perfcells.resize(num_phases_, ADB::null());
for (int phase = 0; phase < num_phases_; ++phase) {
mob_perfcells[phase] = subset(rq[phase].mob, well_cells);
b_perfcells[phase] = subset(rq[phase].b, well_cells);
}
}
}
template <class WellState>
void
MultisegmentWells::
updateWellState(const Vector& dwells,
const double dpmaxrel,
WellState& well_state) const
{
if (!wells().empty())
{
const int nw = wells().size();
const int nseg_total = nseg_total_;
const int np = numPhases();
// Extract parts of dwells corresponding to each part.
int varstart = 0;
const Vector dsegqs = subset(dwells, Span(np * nseg_total, 1, varstart));
varstart += dsegqs.size();
const Vector dsegp = subset(dwells, Span(nseg_total, 1, varstart));
varstart += dsegp.size();
assert(varstart == dwells.size());
// segment phase rates update
// in dwells, the phase rates are ordered by phase.
// while in WellStateMultiSegment, the phase rates are ordered by segments
const DataBlock wsr = Eigen::Map<const DataBlock>(dsegqs.data(), np, nseg_total).transpose();
const Vector dwsr = Eigen::Map<const Vector>(wsr.data(), nseg_total * np);
const Vector wsr_old = Eigen::Map<const Vector>(&well_state.segPhaseRates()[0], nseg_total * np);
const Vector sr = wsr_old - dwsr;
std::copy(&sr[0], &sr[0] + sr.size(), well_state.segPhaseRates().begin());
// segment pressure updates
const Vector segp_old = Eigen::Map<const Vector>(&well_state.segPress()[0], nseg_total, 1);
// TODO: applying the pressure change limiter to all the segments, not sure if it is the correct thing to do
const Vector dsegp_limited = sign(dsegp) * dsegp.abs().min(segp_old.abs() * dpmaxrel);
const Vector segp = segp_old - dsegp_limited;
std::copy(&segp[0], &segp[0] + segp.size(), well_state.segPress().begin());
// update the well rates and bhps, which are not anymore primary vabriables.
// they are updated directly from the updated segment phase rates and segment pressures.
// Bhp update.
Vector bhp = Vector::Zero(nw);
Vector wr = Vector::Zero(nw * np);
// it is better to use subset
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
bhp[w] = well_state.segPress()[start_segment];
// insert can be faster
for (int p = 0; p < np; ++p) {
wr[p + np * w] = well_state.segPhaseRates()[p + np * start_segment];
}
const int nseg = wells()[w]->numberOfSegments();
start_segment += nseg;
}
assert(start_segment == nseg_total);
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin());
// TODO: handling the THP control related.
}
}
template <class SolutionState>
void
MultisegmentWells::
computeWellFlux(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
Vector& aliveWells,
std::vector<ADB>& cq_s) const
{
if (wells().size() == 0) return;
const int np = numPhases();
const int nw = wells().size();
aliveWells = Vector::Constant(nw, 1.0);
const int nseg = nseg_total_;
const int nperf = nperf_total_;
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
cq_s.resize(np, ADB::null());
{
const Vector& Tw = wellOps().conn_trans_factors;
const std::vector<int>& well_cells = wellOps().well_cells;
// determining in-flow (towards well-bore) or out-flow (towards reservoir)
// for mutli-segmented wells and non-segmented wells, the calculation of the drawdown are different.
const ADB& p_perfcells = subset(state.pressure, well_cells);
const ADB& rs_perfcells = subset(state.rs, well_cells);
const ADB& rv_perfcells = subset(state.rv, well_cells);
const ADB& seg_pressures = state.segp;
const ADB seg_pressures_perf = wellOps().s2p * seg_pressures;
// Create selector for perforations of multi-segment vs. regular wells.
Vector is_multisegment_well(nw);
for (int w = 0; w < nw; ++w) {
is_multisegment_well[w] = double(wells()[w]->isMultiSegmented());
}
// Take one flag per well and expand to one flag per perforation.
Vector is_multisegment_perf = wellOps().w2p * is_multisegment_well.matrix();
Selector<double> msperf_selector(is_multisegment_perf, Selector<double>::NotEqualZero);
// Compute drawdown.
ADB h_nc = msperf_selector.select(well_segment_perforation_pressure_diffs_,
ADB::constant(well_perforation_pressure_diffs_));
const Vector h_cj = msperf_selector.select(well_perforation_cell_pressure_diffs_, Vector::Zero(nperf));
// Special handling for when we are called from solveWellEq().
// TODO: restructure to eliminate need for special treatmemt.
if ((h_nc.numBlocks() != 0) && (h_nc.numBlocks() != seg_pressures_perf.numBlocks())) {
assert(seg_pressures_perf.numBlocks() == 2);
assert(h_nc.numBlocks() > 2);
h_nc = wellhelpers::onlyWellDerivs(h_nc);
assert(h_nc.numBlocks() == 2);
}
ADB drawdown = (p_perfcells + h_cj - seg_pressures_perf - h_nc);
// selects injection perforations
Vector selectInjectingPerforations = Vector::Zero(nperf);
// selects producing perforations
Vector selectProducingPerforations = Vector::Zero(nperf);
for (int c = 0; c < nperf; ++c){
if (drawdown.value()[c] < 0)
selectInjectingPerforations[c] = 1;
else
selectProducingPerforations[c] = 1;
}
// handling flow into wellbore
// maybe there are something to do there make the procedure easier.
std::vector<ADB> cq_ps(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown);
cq_ps[phase] = b_perfcells[phase] * cq_p;
}
if ((*active_)[Oil] && (*active_)[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const ADB cq_psOil = cq_ps[oilpos];
const ADB cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += rs_perfcells * cq_psOil;
cq_ps[oilpos] += rv_perfcells * cq_psGas;
}
// hadling flow out from wellbore
ADB total_mob = mob_perfcells[0];
for (int phase = 1; phase < np; ++phase) {
total_mob += mob_perfcells[phase];
}
// injection perforations total volume rates
const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown);
// compute wellbore mixture for injecting perforations
// The wellbore mixture depends on the inflow from the reservoir
// and the well injection rates.
// TODO: should this based on the segments?
// TODO: for the usual wells, the well rates are the sum of the perforations.
// TODO: for multi-segmented wells, the segment rates are not the sum of the perforations.
// TODO: two options here
// TODO: 1. for each segment, only the inflow from the perforations related to this segment are considered.
// TODO: 2. for each segment, the inflow from the perforrations related to this segment and also all the inflow
// TODO: from the upstreaming sgments and their perforations need to be considered.
// TODO: This way can be the more consistent way, while let us begin with the first option. The second option
// TODO: involves one operations that are not valid now. (i.e. how to transverse from the leaves to the root,
// TODO: although we can begin from the brutal force way)
// TODO: stop using wells() here.
std::vector<ADB> wbq(np, ADB::null());
ADB wbqt = ADB::constant(Vector::Zero(nseg));
const DataBlock compi = Eigen::Map<const DataBlock>(wellsStruct().comp_frac, nw, np);
for (int phase = 0; phase < np; ++phase) {
const ADB& q_ps = wellOps().p2s * cq_ps[phase];
const ADB& q_s = subset(state.segqs, Span(nseg, 1, phase * nseg));
Selector<double> injectingPhase_selector(q_s.value(), Selector<double>::GreaterZero);
const int pos = pu.phase_pos[phase];
// this is per segment
wbq[phase] = (wellOps().w2s * ADB::constant(compi.col(pos)) * injectingPhase_selector.select(q_s, ADB::constant(Vector::Zero(nseg)))) - q_ps;
// TODO: it should be a single value for this certain well.
// TODO: it need to be changed later to handle things more consistently
// or there should be an earsier way to decide if the well is dead.
wbqt += wbq[phase];
}
// Set aliveWells.
// the first value of the wbqt is the one to decide if the well is dead
// or there should be some dead segments?
{
int topseg = 0;
for (int w = 0; w < nw; ++w) {
if (wbqt.value()[topseg] == 0.0) { // yes we really mean == here, no fuzzyness
aliveWells[w] = 0.0;
}
topseg += wells()[w]->numberOfSegments();
}
}
// compute wellbore mixture at standard conditions.
// before, the determination of alive wells is based on wells.
// now, will there be any dead segment? I think no.
// TODO: it is not clear if the cmix_s should be based on segment or the well
std::vector<ADB> cmix_s(np, ADB::null());
Selector<double> aliveWells_selector(aliveWells, Selector<double>::NotEqualZero);
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
const ADB phase_fraction = wellOps().topseg2w * (wbq[phase] / wbqt);
cmix_s[phase] = wellOps().w2p * aliveWells_selector.select(phase_fraction, ADB::constant(compi.col(pos)));
}
// compute volume ration between connection at standard conditions
ADB volumeRatio = ADB::constant(Vector::Zero(nperf));
const ADB d = Vector::Constant(nperf,1.0) - rv_perfcells * rs_perfcells;
for (int phase = 0; phase < np; ++phase) {
ADB tmp = cmix_s[phase];
if (phase == Oil && (*active_)[Gas]) {
const int gaspos = pu.phase_pos[Gas];
tmp = tmp - rv_perfcells * cmix_s[gaspos] / d;
}
if (phase == Gas && (*active_)[Oil]) {
const int oilpos = pu.phase_pos[Oil];
tmp = tmp - rs_perfcells * cmix_s[oilpos] / d;
}
volumeRatio += tmp / b_perfcells[phase];
}
// injecting connections total volumerates at standard conditions
ADB cqt_is = cqt_i/volumeRatio;
// connection phase volumerates at standard conditions
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is;
}
}
}
template <class SolutionState, class WellState>
void
MultisegmentWells::
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw) const
{
// Update the perforation phase rates (used to calculate the pressure drop in the wellbore).
const int np = numPhases();
const int nw = numWells();
Vector cq = superset(cq_s[0].value(), Span(nperf_total_, np, 0), nperf_total_ * np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(cq_s[phase].value(), Span(nperf_total_, np, phase), nperf_total_ * np);
}
xw.perfPhaseRates().assign(cq.data(), cq.data() + nperf_total_ * np);
// Update the perforation pressures for usual wells first to recover the resutls
// without mutlti segment wells. For segment wells, it has not been decided if
// we need th concept of preforation pressures
xw.perfPress().resize(nperf_total_, -1.e100);
const Vector& cdp = well_perforation_pressure_diffs_;
int start_segment = 0;
int start_perforation = 0;
for (int i = 0; i < nw; ++i) {
WellMultiSegmentConstPtr well = wells_multisegment_[i];
const int nperf = well->numberOfPerforations();
const int nseg = well->numberOfSegments();
if (well->isMultiSegmented()) {
start_segment += nseg;
start_perforation += nperf;
continue;
}
const Vector cdp_well = subset(cdp, Span(nperf, 1, start_perforation));
const ADB segp = subset(state.segp, Span(nseg, 1, start_segment));
const Vector perfpressure = (well->wellOps().s2p * segp.value().matrix()).array() + cdp_well;
std::copy(perfpressure.data(), perfpressure.data() + nperf, &xw.perfPress()[start_perforation]);
start_segment += nseg;
start_perforation += nperf;
}
assert(start_segment == nseg_total_);
assert(start_perforation == nperf_total_);
}
template <class SolutionState>
void
MultisegmentWells::
computeSegmentFluidProperties(const SolutionState& state)
{
const int np = numPhases();
const int nw = wells().size();
const int nseg_total = nseg_total_;
if ( !wellOps().has_multisegment_wells ){
// not sure if this is needed actually
// TODO: to check later if this is really necessary.
well_segment_densities_ = ADB::constant(Vector::Zero(nseg_total));
segment_mass_flow_rates_ = ADB::constant(Vector::Zero(nseg_total));
segment_viscosities_ = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
segment_comp_surf_volume_current_[phase] = ADB::constant(Vector::Zero(nseg_total));
segmentCompSurfVolumeInitial()[phase] = Vector::Zero(nseg_total);
}
return;
}
// although we will calculate segment density for non-segmented wells at the same time,
// while under most of the cases, they will not be used,
// since for most of the cases, the density calculation for non-segment wells are
// set to be 'SEG' way, which is not a option for multi-segment wells.
// When the density calcuation for non-segmented wells are set to 'AVG', then
// the density calculation of the mixtures can be the same, while it remains to be verified.
// The grid cells associated with segments.
// TODO: shoud be computed once and stored in WellState or global Wells structure or class.
std::vector<int> segment_cells;
segment_cells.reserve(nseg_total);
for (int w = 0; w < nw; ++w) {
const std::vector<int>& segment_cells_well = wells()[w]->segmentCells();
segment_cells.insert(segment_cells.end(), segment_cells_well.begin(), segment_cells_well.end());
}
assert(int(segment_cells.size()) == nseg_total);
const ADB segment_temp = subset(state.temperature, segment_cells);
// using the segment pressure or the average pressure
// using the segment pressure first
const ADB& segment_press = state.segp;
// Compute PVT properties for segments.
std::vector<PhasePresence> segment_cond(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
segment_cond[s] = (*phase_condition_)[segment_cells[s]];
}
std::vector<ADB> b_seg(np, ADB::null());
// Viscosities for different phases
std::vector<ADB> mu_seg(np, ADB::null());
ADB rsmax_seg = ADB::null();
ADB rvmax_seg = ADB::null();
const PhaseUsage& pu = fluid_->phaseUsage();
if (pu.phase_used[Water]) {
b_seg[pu.phase_pos[Water]] = fluid_->bWat(segment_press, segment_temp, segment_cells);
mu_seg[pu.phase_pos[Water]] = fluid_->muWat(segment_press, segment_temp, segment_cells);
}
assert((*active_)[Oil]);
const ADB segment_so = subset(state.saturation[pu.phase_pos[Oil]], segment_cells);
if (pu.phase_used[Oil]) {
const ADB segment_rs = subset(state.rs, segment_cells);
b_seg[pu.phase_pos[Oil]] = fluid_->bOil(segment_press, segment_temp, segment_rs,
segment_cond, segment_cells);
// rsmax_seg = fluidRsSat(segment_press, segment_so, segment_cells);
rsmax_seg = fluid_->rsSat(segment_press, segment_so, segment_cells);
mu_seg[pu.phase_pos[Oil]] = fluid_->muOil(segment_press, segment_temp, segment_rs,
segment_cond, segment_cells);
}
assert((*active_)[Gas]);
if (pu.phase_used[Gas]) {
const ADB segment_rv = subset(state.rv, segment_cells);
b_seg[pu.phase_pos[Gas]] = fluid_->bGas(segment_press, segment_temp, segment_rv,
segment_cond, segment_cells);
// rvmax_seg = fluidRvSat(segment_press, segment_so, segment_cells);
rvmax_seg = fluid_->rvSat(segment_press, segment_so, segment_cells);
mu_seg[pu.phase_pos[Gas]] = fluid_->muGas(segment_press, segment_temp, segment_rv,
segment_cond, segment_cells);
}
// Extract segment flow by phase (segqs) and compute total surface rate.
ADB tot_surface_rate = ADB::constant(Vector::Zero(nseg_total));
std::vector<ADB> segqs(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
segqs[phase] = subset(state.segqs, Span(nseg_total, 1, phase * nseg_total));
tot_surface_rate += segqs[phase];
}
// TODO: later this will be implmented as a global mapping
std::vector<std::vector<double>> comp_frac(np, std::vector<double>(nseg_total, 0.0));
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wells()[w];
const int nseg = well->numberOfSegments();
const std::vector<double>& comp_frac_well = well->compFrac();
for (int phase = 0; phase < np; ++phase) {
for (int s = 0; s < nseg; ++s) {
comp_frac[phase][s + start_segment] = comp_frac_well[phase];
}
}
start_segment += nseg;
}
assert(start_segment == nseg_total);
// Compute mix.
// 'mix' contains the component fractions under surface conditions.
std::vector<ADB> mix(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
// initialize to be the compFrac for each well,
// then update only the one with non-zero total volume rate
mix[phase] = ADB::constant(Eigen::Map<Vector>(comp_frac[phase].data(), nseg_total));
}
// There should be a better way to do this.
Selector<double> non_zero_tot_rate(tot_surface_rate.value(), Selector<double>::NotEqualZero);
for (int phase = 0; phase < np; ++phase) {
mix[phase] = non_zero_tot_rate.select(segqs[phase] / tot_surface_rate, mix[phase]);
}
// Calculate rs and rv.
ADB rs = ADB::constant(Vector::Zero(nseg_total));
ADB rv = rs;
const int gaspos = pu.phase_pos[Gas];
const int oilpos = pu.phase_pos[Oil];
Selector<double> non_zero_mix_oilpos(mix[oilpos].value(), Selector<double>::GreaterZero);
Selector<double> non_zero_mix_gaspos(mix[gaspos].value(), Selector<double>::GreaterZero);
// What is the better way to do this?
// big values should not be necessary
ADB big_values = ADB::constant(Vector::Constant(nseg_total, 1.e100));
ADB mix_gas_oil = non_zero_mix_oilpos.select(mix[gaspos] / mix[oilpos], big_values);
ADB mix_oil_gas = non_zero_mix_gaspos.select(mix[oilpos] / mix[gaspos], big_values);
if ((*active_)[Oil]) {
Vector selectorUnderRsmax = Vector::Zero(nseg_total);
Vector selectorAboveRsmax = Vector::Zero(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
if (mix_gas_oil.value()[s] > rsmax_seg.value()[s]) {
selectorAboveRsmax[s] = 1.0;
} else {
selectorUnderRsmax[s] = 1.0;
}
}
rs = non_zero_mix_oilpos.select(selectorAboveRsmax * rsmax_seg + selectorUnderRsmax * mix_gas_oil, rs);
}
if ((*active_)[Gas]) {
Vector selectorUnderRvmax = Vector::Zero(nseg_total);
Vector selectorAboveRvmax = Vector::Zero(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
if (mix_oil_gas.value()[s] > rvmax_seg.value()[s]) {
selectorAboveRvmax[s] = 1.0;
} else {
selectorUnderRvmax[s] = 1.0;
}
}
rv = non_zero_mix_gaspos.select(selectorAboveRvmax * rvmax_seg + selectorUnderRvmax * mix_oil_gas, rv);
}
// Calculate the phase fraction under reservoir conditions.
std::vector<ADB> x(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
x[phase] = mix[phase];
}
if ((*active_)[Gas] && (*active_)[Oil]) {
x[gaspos] = (mix[gaspos] - mix[oilpos] * rs) / (Vector::Ones(nseg_total) - rs * rv);
x[oilpos] = (mix[oilpos] - mix[gaspos] * rv) / (Vector::Ones(nseg_total) - rs * rv);
}
// Compute total reservoir volume to surface volume ratio.
ADB volrat = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
volrat += x[phase] / b_seg[phase];
}
// Compute segment densities.
ADB dens = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
const Vector surface_density = fluid_->surfaceDensity(phase, segment_cells);
dens += surface_density * mix[phase];
}
well_segment_densities_ = dens / volrat;
// Calculating the surface volume of each component in the segment
assert(np == int(segment_comp_surf_volume_current_.size()));
const ADB segment_surface_volume = segvdt_ / volrat;
for (int phase = 0; phase < np; ++phase) {
segment_comp_surf_volume_current_[phase] = segment_surface_volume * mix[phase];
}
// Mass flow rate of the segments
segment_mass_flow_rates_ = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
// TODO: how to remove one repeated surfaceDensity()
const Vector surface_density = fluid_->surfaceDensity(phase, segment_cells);
segment_mass_flow_rates_ += surface_density * segqs[phase];
}
// Viscosity of the fluid mixture in the segments
segment_viscosities_ = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
segment_viscosities_ += x[phase] * mu_seg[phase];
}
}
template <class SolutionState>
void
MultisegmentWells::
addWellFluxEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
LinearisedBlackoilResidual& residual)
{
// the well flux equations are for each segment and each phase.
// /delta m_p_n / dt - /sigma Q_pi - /sigma q_pj + Q_pn = 0
// 1. It is the gain of the amount of the component p in the segment n during the
// current time step under stock-tank conditions.
// It is used to handle the volume storage effects of the wellbore.
// We need the information from the previous step and the crrent time step.
// 2. for the second term, it is flow into the segment from the inlet segments,
// which are unknown and treated implictly.
// 3. for the third term, it is the inflow through the perforations.
// 4. for the last term, it is the outlet rates and also the segment rates,
// which are the primary variable.
const int np = numPhases();
const int nseg_total = nseg_total_;
ADB segqs = state.segqs;
std::vector<ADB> segment_volume_change_dt(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
if ( wellOps().has_multisegment_wells ) {
// Gain of the surface volume of each component in the segment by dt
segment_volume_change_dt[phase] = segment_comp_surf_volume_current_[phase] -
segmentCompSurfVolumeInitial()[phase];
// Special handling for when we are called from solveWellEq().
// TODO: restructure to eliminate need for special treatmemt.
if (segment_volume_change_dt[phase].numBlocks() != segqs.numBlocks()) {
assert(segment_volume_change_dt[phase].numBlocks() > 2);
assert(segqs.numBlocks() == 2);
segment_volume_change_dt[phase] = wellhelpers::onlyWellDerivs(segment_volume_change_dt[phase]);
assert(segment_volume_change_dt[phase].numBlocks() == 2);
}
const ADB cq_s_seg = wellOps().p2s * cq_s[phase];
const ADB segqs_phase = subset(segqs, Span(nseg_total, 1, phase * nseg_total));
segqs -= superset(cq_s_seg + wellOps().s2s_inlets * segqs_phase + segment_volume_change_dt[phase],
Span(nseg_total, 1, phase * nseg_total), np * nseg_total);
} else {
segqs -= superset(wellOps().p2s * cq_s[phase], Span(nseg_total, 1, phase * nseg_total), np * nseg_total);
}
}
residual.well_flux_eq = segqs;
}
template <class SolutionState, class WellState>
void
MultisegmentWells::
addWellControlEq(const SolutionState& state,
const WellState& xw,
const Vector& aliveWells,
LinearisedBlackoilResidual& residual)
{
// the name of the function is a a little misleading.
// Basically it is the function for the pressure equation.
// And also, it work as the control equation when it is the segment
if( wells().empty() ) return;
const int np = numPhases();
const int nw = wells().size();
const int nseg_total = nseg_total_;
ADB aqua = ADB::constant(Vector::Zero(nseg_total));
ADB liquid = ADB::constant(Vector::Zero(nseg_total));
ADB vapour = ADB::constant(Vector::Zero(nseg_total));
if ((*active_)[Water]) {
aqua += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Aqua * nseg_total));
}
if ((*active_)[Oil]) {
liquid += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Liquid * nseg_total));
}
if ((*active_)[Gas]) {
vapour += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Vapour * nseg_total));
}
// THP control is not implemented for the moment.
// Hydrostatic correction variables
Vector rho_v = Vector::Zero(nw);
Vector vfp_ref_depth_v = Vector::Zero(nw);
// Target vars
Vector bhp_targets = Vector::Zero(nw);
Vector rate_targets = Vector::Zero(nw);
Eigen::SparseMatrix<double> rate_distr(nw, np*nw);
// Selection variables
// well selectors
std::vector<int> bhp_well_elems;
std::vector<int> rate_well_elems;
// segment selectors
std::vector<int> bhp_top_elems;
std::vector<int> rate_top_elems;
std::vector<int> rate_top_phase_elems;
std::vector<int> others_elems;
//Run through all wells to calculate BHP/RATE targets
//and gather info about current control
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
const struct WellControls* wc = wells()[w]->wellControls();
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = xw.currentControls()[w];
const int nseg = wells()[w]->numberOfSegments();
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
bhp_well_elems.push_back(w);
bhp_top_elems.push_back(start_segment);
bhp_targets(w) = well_controls_iget_target(wc, current);
rate_targets(w) = -1e100;
for (int p = 0; p < np; ++p) {
rate_top_phase_elems.push_back(np * start_segment + p);
}
}
break;
case THP:
{
OPM_THROW(std::runtime_error, "THP control is not implemented for multi-sgement wells yet!!");
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
rate_well_elems.push_back(w);
rate_top_elems.push_back(start_segment);
for (int p = 0; p < np; ++p) {
rate_top_phase_elems.push_back(np * start_segment + p);
}
// RESERVOIR and SURFACE rates look the same, from a
// high-level point of view, in the system of
// simultaneous linear equations.
const double* const distr =
well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
rate_distr.insert(w, p*nw + w) = distr[p];
}
bhp_targets(w) = -1.0e100;
rate_targets(w) = well_controls_iget_target(wc, current);
}
break;
}
for (int i = 1; i < nseg; ++i) {
others_elems.push_back(i + start_segment);
}
start_segment += nseg;
}
// for each segment: 1, if the segment is the top segment, then control equation
// 2, if the segment is not the top segment, then the pressure equation
const ADB bhp_residual = subset(state.segp, bhp_top_elems) - subset(bhp_targets, bhp_well_elems);
const ADB rate_residual = subset(rate_distr * subset(state.segqs, rate_top_phase_elems) - rate_targets, rate_well_elems);
ADB others_residual = ADB::constant(Vector::Zero(nseg_total));
if ( wellOps().has_multisegment_wells ) {
// Special handling for when we are called from solveWellEq().
// TODO: restructure to eliminate need for special treatmemt.
ADB wspd = (state.segp.numBlocks() == 2)
? wellhelpers::onlyWellDerivs(well_segment_pressures_delta_)
: well_segment_pressures_delta_;
others_residual = wellOps().eliminate_topseg * (state.segp - wellOps().s2s_outlet * state.segp + wspd);
} else {
others_residual = wellOps().eliminate_topseg * (state.segp - wellOps().s2s_outlet * state.segp);
}
// all the control equations
// TODO: can be optimized better
ADB well_eq_topsegment = subset(superset(bhp_residual, bhp_top_elems, nseg_total) +
superset(rate_residual, rate_top_elems, nseg_total), top_well_segments_);
// For wells that are dead (not flowing), and therefore not communicating
// with the reservoir, we set the equation to be equal to the well's total
// flow. This will be a solution only if the target rate is also zero.
Eigen::SparseMatrix<double> rate_summer(nw, np*nw);
for (int w = 0; w < nw; ++w) {
for (int phase = 0; phase < np; ++phase) {
rate_summer.insert(w, phase*nw + w) = 1.0;
}
}
Selector<double> alive_selector(aliveWells, Selector<double>::NotEqualZero);
// TODO: Here only handles the wells, or the top segments
// should we also handle some non-alive non-top segments?
// should we introduce the cocept of non-alive segments?
// At the moment, we only handle the control equations
well_eq_topsegment = alive_selector.select(well_eq_topsegment, rate_summer * subset(state.segqs, rate_top_phase_elems));
/* residual_.well_eq = superset(bhp_residual, bhp_top_elems, nseg_total) +
superset(rate_residual, rate_top_elems, nseg_total) +
superset(others_residual, others_elems, nseg_total); */
residual.well_eq = superset(well_eq_topsegment, top_well_segments_, nseg_total) +
others_residual;
}
template <class WellState>
void
MultisegmentWells::
updateWellControls(const bool terminal_output,
WellState& xw) const
{
if( wells().empty() ) return ;
std::string modestring[4] = { "BHP", "THP", "RESERVOIR_RATE", "SURFACE_RATE" };
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
const int np = numPhases();
const int nw = wells().size();
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells()[w]->wellControls();
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
int current = xw.currentControls()[w];
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (wellhelpers::constraintBroken(
xw.bhp(), xw.thp(), xw.wellRates(),
w, np, wells()[w]->wellType(), wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
if (terminal_output)
{
std::cout << "Switching control mode for well " << wells()[w]->name()
<< " from " << modestring[well_controls_iget_type(wc, current)]
<< " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl;
}
xw.currentControls()[w] = ctrl_index;
current = xw.currentControls()[w];
}
// Get gravity for THP hydrostatic corrrection
// const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
// Updating well state and primary variables.
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
xw.bhp()[w] = target;
xw.segPress()[top_well_segments_[w]] = target;
break;
case THP: {
OPM_THROW(std::runtime_error, "THP control is not implemented for multi-sgement wells yet!!");
}
case RESERVOIR_RATE:
// No direct change to any observable quantity at
// surface condition. In this case, use existing
// flow rates as initial conditions as reservoir
// rate acts only in aggregate.
break;
case SURFACE_RATE:
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
xw.wellRates()[np * w + phase] = target * distr[phase];
// TODO: consider changing all (not just top) segment rates
// to make them consistent, it could possibly improve convergence.
xw.segPhaseRates()[np * xw.topSegmentLoc()[w] + phase] = target * distr[phase];
}
}
break;
}
}
}
// TODO: This is just a preliminary version, remains to be improved later when we decide a better way
// TODO: to intergrate the usual wells and multi-segment wells.
template <class SolutionState, class WellState>
void
MultisegmentWells::
computeWellConnectionPressures(const SolutionState& state,
const WellState& xw,
const std::vector<ADB>& kr_adb,
const std::vector<ADB>& fluid_density)
{
if( ! wellsActive() ) return ;
using namespace Opm::AutoDiffGrid;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
const int nperf_total = nperf_total_;
const int nw = numWells();
const std::vector<int>& well_cells = wellOps().well_cells;
well_perforation_densities_ = Vector::Zero(nperf_total);
const Vector perf_press = Eigen::Map<const Vector>(xw.perfPress().data(), nperf_total);
Vector avg_press = perf_press * 0.0;
// for the non-segmented/regular wells, calculated the average pressures.
// If it is the top perforation, then average with the bhp().
// If it is not the top perforation, then average with the perforation above it().
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
const int nseg = wells_multisegment_[w]->numberOfSegments();
if (wells_multisegment_[w]->isMultiSegmented()) {
// maybe we should give some reasonable values to prevent the following calculations fail
start_segment += nseg;
continue;
}
std::string well_name(wells_multisegment_[w]->name());
typedef typename WellState::SegmentedWellMapType::const_iterator const_iterator;
const_iterator it_well = xw.segmentedWellMap().find(well_name);
assert(it_well != xw.segmentedWellMap().end());
const int start_perforation = (*it_well).second.start_perforation;
const int end_perforation = start_perforation + (*it_well).second.number_of_perforations;
for (int perf = start_perforation; perf < end_perforation; ++perf) {
const double p_above = perf == start_perforation ? state.segp.value()[start_segment] : perf_press[perf - 1];
const double p_avg = (perf_press[perf] + p_above)/2;
avg_press[perf] = p_avg;
}
start_segment += nseg;
}
assert(start_segment == xw.numSegments());
// Use cell values for the temperature as the wells don't knows its temperature yet.
const ADB perf_temp = subset(state.temperature, well_cells);
// Compute b, rsmax, rvmax values for perforations.
// Evaluate the properties using average well block pressures
// and cell values for rs, rv, phase condition and temperature.
const ADB avg_press_ad = ADB::constant(avg_press);
std::vector<PhasePresence> perf_cond(nperf_total);
for (int perf = 0; perf < nperf_total; ++perf) {
perf_cond[perf] = (*phase_condition_)[well_cells[perf]];
}
const PhaseUsage& pu = fluid_->phaseUsage();
DataBlock b(nperf_total, pu.num_phases);
std::vector<double> rsmax_perf(nperf_total, 0.0);
std::vector<double> rvmax_perf(nperf_total, 0.0);
if (pu.phase_used[BlackoilPhases::Aqua]) {
const Vector bw = fluid_->bWat(avg_press_ad, perf_temp, well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw;
}
assert((*active_)[Oil]);
const Vector perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells);
if (pu.phase_used[BlackoilPhases::Liquid]) {
const ADB perf_rs = subset(state.rs, well_cells);
const Vector bo = fluid_->bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo;
const Vector rssat = fluid_->rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rsmax_perf.assign(rssat.data(), rssat.data() + nperf_total);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const ADB perf_rv = subset(state.rv, well_cells);
const Vector bg = fluid_->bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg;
const Vector rvsat = fluid_->rvSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rvmax_perf.assign(rvsat.data(), rvsat.data() + nperf_total);
}
// b is row major, so can just copy data.
std::vector<double> b_perf(b.data(), b.data() + nperf_total * pu.num_phases);
const Vector& perfcelldepth = perf_cell_depth_;
std::vector<double> perf_cell_depth(perfcelldepth.data(), perfcelldepth.data() + nperf_total);
// Surface density.
// The compute density segment wants the surface densities as
// an np * number of wells cells array
Vector rho = superset(fluid_->surfaceDensity(0 , well_cells), Span(nperf_total, pu.num_phases, 0), nperf_total * pu.num_phases);
for (int phase = 1; phase < pu.num_phases; ++phase) {
rho += superset(fluid_->surfaceDensity(phase , well_cells), Span(nperf_total, pu.num_phases, phase), nperf_total * pu.num_phases);
}
std::vector<double> surf_dens_perf(rho.data(), rho.data() + nperf_total * pu.num_phases);
// 2. Compute densities
std::vector<double> cd =
WellDensitySegmented::computeConnectionDensities(
wellsStruct(), xw, fluid_->phaseUsage(),
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
// 3. Compute pressure deltas
std::vector<double> cdp =
WellDensitySegmented::computeConnectionPressureDelta(
wellsStruct(), perf_cell_depth, cd, gravity_);
// 4. Store the results
well_perforation_densities_ = Eigen::Map<const Vector>(cd.data(), nperf_total); // This one is not useful for segmented wells at all
well_perforation_pressure_diffs_ = Eigen::Map<const Vector>(cdp.data(), nperf_total);
if ( !wellOps().has_multisegment_wells ) {
well_perforation_cell_densities_ = Vector::Zero(nperf_total);
well_perforation_cell_pressure_diffs_ = Vector::Zero(nperf_total);
return;
}
// compute the average of the fluid densites in the well blocks.
// the average is weighted according to the fluid relative permeabilities.
// const std::vector<ADB> kr_adb = Base::computeRelPerm(state);
size_t temp_size = kr_adb.size();
std::vector<Vector> perf_kr;
for(size_t i = 0; i < temp_size; ++i) {
// const ADB kr_phase_adb = subset(kr_adb[i], well_cells);
const Vector kr_phase = (subset(kr_adb[i], well_cells)).value();
perf_kr.push_back(kr_phase);
}
// compute the averaged density for the well block
// TODO: for the non-segmented wells, they should be set to zero
// TODO: for the moment, they are still calculated, while not used later.
for (int i = 0; i < nperf_total; ++i) {
double sum_kr = 0.;
int np = perf_kr.size(); // make sure it is 3
for (int p = 0; p < np; ++p) {
sum_kr += perf_kr[p][i];
}
for (int p = 0; p < np; ++p) {
perf_kr[p][i] /= sum_kr;
}
}
Vector rho_avg_perf = Vector::Constant(nperf_total, 0.0);
// TODO: make sure the order of the density and the order of the kr are the same.
for (int phaseIdx = 0; phaseIdx < fluid_->numPhases(); ++phaseIdx) {
// const int canonicalPhaseIdx = canph_[phaseIdx];
// const ADB fluid_density = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv);
const Vector rho_perf = subset(fluid_density[phaseIdx], well_cells).value();
// TODO: phaseIdx or canonicalPhaseIdx ?
rho_avg_perf += rho_perf * perf_kr[phaseIdx];
}
well_perforation_cell_densities_ = Eigen::Map<const Vector>(rho_avg_perf.data(), nperf_total);
// We should put this in a global class
std::vector<double> perf_depth_vec;
perf_depth_vec.reserve(nperf_total);
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wells_multisegment_[w];
const std::vector<double>& perf_depth_well = well->perfDepth();
perf_depth_vec.insert(perf_depth_vec.end(), perf_depth_well.begin(), perf_depth_well.end());
}
assert(int(perf_depth_vec.size()) == nperf_total);
const Vector perf_depth = Eigen::Map<Vector>(perf_depth_vec.data(), nperf_total);
const Vector perf_cell_depth_diffs = perf_depth - perfcelldepth;
well_perforation_cell_pressure_diffs_ = gravity_ * well_perforation_cell_densities_ * perf_cell_depth_diffs;
// Calculating the depth difference between segment nodes and perforations.
// TODO: should be put somewhere else for better clarity later
well_segment_perforation_depth_diffs_ = Vector::Constant(nperf_total, -1e100);
int start_perforation = 0;
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wells_multisegment_[w];
const int nseg = well->numberOfSegments();
const int nperf = well->numberOfPerforations();
const std::vector<std::vector<int>>& segment_perforations = well->segmentPerforations();
for (int s = 0; s < nseg; ++s) {
const int nperf_seg = segment_perforations[s].size();
const double segment_depth = well->segmentDepth()[s];
for (int perf = 0; perf < nperf_seg; ++perf) {
const int perf_number = segment_perforations[s][perf] + start_perforation;
well_segment_perforation_depth_diffs_[perf_number] = segment_depth - perf_depth[perf_number];
}
}
start_perforation += nperf;
}
assert(start_perforation == nperf_total);
}
template <class WellState>
void
MultisegmentWells::
variableWellStateInitials(const WellState& xw,
std::vector<Vector>& vars0) const
{
// Initial well rates
if ( wells_multisegment_.size() > 0 )
{
// Need to reshuffle well segment rates, from phase running fastest
const int nseg = xw.numSegments();
const int np = xw.numPhases();
// The transpose() below switches the ordering of the segment rates
const DataBlock segrates = Eigen::Map<const DataBlock>(& xw.segPhaseRates()[0], nseg, np).transpose();
// segment phase rates in surface volume
const Vector segqs = Eigen::Map<const Vector>(segrates.data(), nseg * np);
vars0.push_back(segqs);
// for the pressure of the segments
const Vector segp = Eigen::Map<const Vector>(& xw.segPress()[0], xw.segPress().size());
vars0.push_back(segp);
}
else
{
// push null sates for segqs and segp
vars0.push_back(Vector());
vars0.push_back(Vector());
}
}
}
#endif // OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED