opm-simulators/opm/autodiff/CPRPreconditioner.hpp

581 lines
22 KiB
C++
Raw Normal View History

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CPRPRECONDITIONER_HEADER_INCLUDED
#define OPM_CPRPRECONDITIONER_HEADER_INCLUDED
#include <memory>
#include <type_traits>
#include <opm/core/utility/platform_dependent/disable_warnings.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <dune/istl/bvector.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/io.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/schwarz.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/paamg/amg.hh>
#include <dune/istl/paamg/kamg.hh>
#include <dune/istl/paamg/pinfo.hh>
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
2014-08-14 07:19:55 -05:00
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Exceptions.hpp>
namespace Opm
{
namespace
{
//! \brief A custom deleter for the parallel preconditioners.
//!
//! In dune-istl they hold a reference to the sequential preconditioner.
//! In CPRPreconditioner we use unique_ptr for the memory management.
//! Ergo we need to construct the sequential preconditioner with new and
//! make sure that it gets deleted together with the enclosing parallel
//! preconditioner. Therefore this deleter stores a pointer to it and deletes
//! it during destruction.
template<class PREC>
class ParallelPreconditionerDeleter
{
public:
ParallelPreconditionerDeleter()
: ilu_()
{}
ParallelPreconditionerDeleter(PREC& ilu)
: ilu_(&ilu){}
template<class T>
void operator()(T* pt)
{
delete pt;
2015-02-11 03:58:59 -06:00
delete ilu_;
}
private:
PREC* ilu_;
};
///
/// \brief A traits class for selecting the types of the preconditioner.
///
/// \tparam M The type of the matrix.
/// \tparam X The type of the domain of the linear problem.
/// \tparam Y The type of the range of the linear problem.
/// \tparam P The type of the parallel information.
////
template<class M, class X, class Y, class P>
struct CPRSelector
{
/// \brief The information about the parallelization and communication
typedef Dune::Amg::SequentialInformation ParallelInformation;
/// \brief The operator type;
typedef Dune::MatrixAdapter<M, X, Y> Operator;
/// \brief The type of the preconditioner used for the elliptic part.
typedef Dune::SeqILU0<M,X,X> EllipticPreconditioner;
/// \brief The type of the unique pointer to the preconditioner of the elliptic part.
typedef std::unique_ptr<EllipticPreconditioner> EllipticPreconditionerPointer;
/// \brief type of AMG used to precondition the elliptic system.
typedef EllipticPreconditioner Smoother;
typedef Dune::Amg::AMG<Operator, X, Smoother, ParallelInformation> AMG;
/// \brief creates an Operator from the matrix
/// \param M The matrix to use.
/// \param p The parallel information to use.
static Operator* makeOperator(const M& m, const P&)
{
return new Operator(m);
}
};
#if HAVE_MPI
/// \copydoc CPRSelector<M,X,X,Y,P>
template<class M, class X, class Y, class I1, class I2>
struct CPRSelector<M,X,Y,Dune::OwnerOverlapCopyCommunication<I1,I2> >
{
/// \brief The information about the parallelization and communication
typedef Dune::OwnerOverlapCopyCommunication<I1,I2> ParallelInformation;
/// \brief The operator type;
typedef Dune::OverlappingSchwarzOperator<M,X,X,ParallelInformation> Operator;
/// \brief The type of the preconditioner used for the elliptic part.
typedef Dune::BlockPreconditioner<X, X, ParallelInformation, Dune::SeqILU0<M,X,X> >
EllipticPreconditioner;
/// \brief The type of the unique pointer to the preconditioner of the elliptic part.
typedef std::unique_ptr<EllipticPreconditioner,
ParallelPreconditionerDeleter<Dune::SeqILU0<M,X,X> > >
EllipticPreconditionerPointer;
typedef EllipticPreconditioner Smoother;
typedef Dune::Amg::AMG<Operator, X, Smoother, ParallelInformation> AMG;
/// \brief creates an Operator from the matrix
/// \param M The matrix to use.
/// \param p The parallel information to use.
static Operator* makeOperator(const M& m, const ParallelInformation& p)
{
return new Operator(m, p);
}
};
//! \brief Creates the deleter needed for the parallel ILU preconditioners.
//! \tparam ILU The type of the underlying sequential ILU preconditioner.
//! \tparam I1 The global index type.
//! \tparam I2 The local index type.
//! \param ilu A reference to the wrapped preconditioner
//! \param p The parallel information for template parameter deduction.
template<class ILU, class I1, class I2>
ParallelPreconditionerDeleter<ILU>
createParallelDeleter(ILU& ilu, const Dune::OwnerOverlapCopyCommunication<I1,I2>& p)
{
(void) p;
return ParallelPreconditionerDeleter<ILU>(ilu);
}
#endif
//! \brief Creates and initializes a unique pointer to an sequential ILU0 preconditioner.
//! \param A The matrix of the linear system to solve.
//! \param relax The relaxation factor to use.
template<class M, class X>
std::shared_ptr<Dune::SeqILU0<M,X,X> >
createILU0Ptr(const M& A, double relax, const Dune::Amg::SequentialInformation&)
{
return std::shared_ptr<Dune::SeqILU0<M,X,X> >(new Dune::SeqILU0<M,X,X>( A, relax) );
}
//! \brief Creates and initializes a shared pointer to an ILUn preconditioner.
//! \param A The matrix of the linear system to solve.
//! \param ilu_n The n parameter for the extension of the nonzero pattern.
//! \param relax The relaxation factor to use.
template<class M, class X>
std::shared_ptr<Dune::SeqILUn<M,X,X> >
createILUnPtr(const M& A, int ilu_n, double relax, const Dune::Amg::SequentialInformation&)
{
return std::shared_ptr<Dune::SeqILUn<M,X,X> >(new Dune::SeqILUn<M,X,X>( A, ilu_n, relax) );
}
#if HAVE_MPI
template<class ILU, class I1, class I2>
struct SelectParallelILUSharedPtr
{
typedef std::shared_ptr<
Dune::BlockPreconditioner<
typename ILU::range_type,
typename ILU::domain_type,
Dune::OwnerOverlapCopyCommunication<I1,I2>,
ILU
>
> type;
};
//! \brief Creates and initializes a shared pointer to an ILUn preconditioner.
//! \param A The matrix of the linear system to solve.
//! \param relax The relaxation factor to use.
/// \param comm The object describing the parallelization information and communication.
template<class M, class X, class I1, class I2>
typename SelectParallelILUSharedPtr<Dune::SeqILU0<M,X,X>, I1, I2>::type
createILU0Ptr(const M& A, double relax,
const Dune::OwnerOverlapCopyCommunication<I1,I2>& comm)
{
typedef Dune::BlockPreconditioner<
X,
X,
Dune::OwnerOverlapCopyCommunication<I1,I2>,
Dune::SeqILU0<M,X,X>
> PointerType;
Dune::SeqILU0<M,X,X>* ilu = new Dune::SeqILU0<M,X,X>(A, relax);
return typename SelectParallelILUSharedPtr<Dune::SeqILU0<M,X,X>, I1, I2>
::type ( new PointerType(*ilu, comm), createParallelDeleter(*ilu, comm));
}
//! \brief Creates and initializes a shared pointer to an ILUn preconditioner.
//! \param A The matrix of the linear system to solve.
//! \param ilu_n The n parameter for the extension of the nonzero pattern.
//! \param relax The relaxation factor to use.
/// \param comm The object describing the parallelization information and communication.
template<class M, class X, class I1, class I2>
typename SelectParallelILUSharedPtr<Dune::SeqILUn<M,X,X>, I1, I2>::type
createILUnPtr(const M& A, int ilu_n, double relax,
const Dune::OwnerOverlapCopyCommunication<I1,I2>& comm)
{
typedef Dune::BlockPreconditioner<
X,
X,
Dune::OwnerOverlapCopyCommunication<I1,I2>,
Dune::SeqILUn<M,X,X>
> PointerType;
Dune::SeqILUn<M,X,X>* ilu = new Dune::SeqILUn<M,X,X>( A, ilu_n, relax);
return typename SelectParallelILUSharedPtr<Dune::SeqILUn<M,X,X>, I1, I2>::type
(new PointerType(*ilu, comm),createParallelDeleter(*ilu, comm));
}
#endif
/// \brief Creates the elliptic preconditioner (ILU0)
/// \param Ae The matrix of the elliptic system.
/// \param relax The relaxation parameter for ILU0
template<class M, class X=typename M::range_type>
std::unique_ptr<Dune::SeqILU0<M,X,X> >
createEllipticPreconditionerPointer(const M& Ae, double relax,
const Dune::Amg::SequentialInformation&)
{
return std::unique_ptr<Dune::SeqILU0<M,X,X> >(new Dune::SeqILU0<M,X,X>(Ae, relax));
}
#if HAVE_MPI
/// \brief Creates the elliptic preconditioner (ILU0)
/// \param Ae The matrix of the elliptic system.
/// \param relax The relaxation parameter for ILU0.
/// \param comm The object describing the parallelization information and communication.
template<class M, class X=typename M::range_type, class I1, class I2>
typename CPRSelector<M,X,X,Dune::OwnerOverlapCopyCommunication<I1,I2> >
::EllipticPreconditionerPointer
createEllipticPreconditionerPointer(const M& Ae, double relax,
const Dune::OwnerOverlapCopyCommunication<I1,I2>& comm)
{
typedef Dune::BlockPreconditioner<X, X,
Dune::OwnerOverlapCopyCommunication<I1,I2>,
Dune::SeqILU0<M,X,X> >
ParallelPreconditioner;
Dune::SeqILU0<M,X,X>* ilu=new Dune::SeqILU0<M,X,X>(Ae, relax);
typedef typename CPRSelector<M,X,X,Dune::OwnerOverlapCopyCommunication<I1,I2> >
::EllipticPreconditionerPointer EllipticPreconditionerPointer;
return EllipticPreconditionerPointer(new ParallelPreconditioner(*ilu, comm),
createParallelDeleter(*ilu, comm));
}
#endif
} // end namespace
struct CPRParameter
{
double cpr_relax_;
double cpr_solver_tol_;
int cpr_ilu_n_;
int cpr_max_ell_iter_;
bool cpr_use_amg_;
bool cpr_use_bicgstab_;
2015-03-31 05:54:26 -05:00
bool cpr_solver_verbose_;
CPRParameter() { reset(); }
CPRParameter( const parameter::ParameterGroup& param)
{
// reset values to default
reset();
2015-03-31 05:54:26 -05:00
cpr_relax_ = param.getDefault("cpr_relax", cpr_relax_);
cpr_solver_tol_ = param.getDefault("cpr_solver_tol", cpr_solver_tol_);
cpr_ilu_n_ = param.getDefault("cpr_ilu_n", cpr_ilu_n_);
cpr_max_ell_iter_ = param.getDefault("cpr_max_elliptic_iter",cpr_max_ell_iter_);
cpr_use_amg_ = param.getDefault("cpr_use_amg", cpr_use_amg_);
cpr_use_bicgstab_ = param.getDefault("cpr_use_bicgstab", cpr_use_bicgstab_);
cpr_solver_verbose_ = param.getDefault("cpr_solver_verbose", cpr_solver_verbose_);
}
void reset()
{
2015-03-31 05:54:26 -05:00
cpr_relax_ = 1.0;
cpr_solver_tol_ = 1e-2;
2015-03-31 05:54:26 -05:00
cpr_ilu_n_ = 0;
cpr_max_ell_iter_ = 25;
cpr_use_amg_ = true;
2015-03-31 05:54:26 -05:00
cpr_use_bicgstab_ = true;
cpr_solver_verbose_ = false;
}
};
/*!
\brief CPR preconditioner.
This is a two-stage preconditioner, combining an elliptic-type
partial solution with ILU0 for the whole system.
\tparam M The matrix type to operate on
\tparam X Type of the update
\tparam Y Type of the defect
\tparam P Type of the parallel information. If not provided
this will be Dune::Amg::SequentialInformation.
The preconditioner is parallel if this is
Dune::OwnerOverlapCopyCommunication<int,int>
*/
template<class M, class X, class Y,
class P=Dune::Amg::SequentialInformation>
class CPRPreconditioner : public Dune::Preconditioner<X,Y>
{
// prohibit copying for now
CPRPreconditioner( const CPRPreconditioner& );
public:
//! \brief The type describing the parallel information
typedef P ParallelInformation;
//! \brief The matrix type the preconditioner is for.
typedef typename Dune::remove_const<M>::type matrix_type;
//! \brief The domain type of the preconditioner.
typedef X domain_type;
//! \brief The range type of the preconditioner.
typedef Y range_type;
//! \brief The field type of the preconditioner.
typedef typename X::field_type field_type;
// define the category
enum {
//! \brief The category the preconditioner is part of.
category = std::is_same<P,Dune::Amg::SequentialInformation>::value?
Dune::SolverCategory::sequential:Dune::SolverCategory::overlapping
};
//! \brief Elliptic Operator
typedef typename CPRSelector<M,X,X,P>::Operator Operator;
//! \brief preconditioner for the whole system (here either ILU(0) or ILU(n)
typedef Dune::Preconditioner<X,X> WholeSystemPreconditioner;
//! \brief type of the unique pointer to the ilu-0 preconditioner
//! used the for the elliptic system
typedef typename CPRSelector<M,X,X,P>::EllipticPreconditionerPointer
EllipticPreconditionerPointer;
//! \brief amg preconditioner for the elliptic system
typedef typename CPRSelector<M,X,X,P>::AMG AMG;
/*! \brief Constructor.
Constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
\param Ae The top-left elliptic part of A.
\param relax The ILU0 relaxation factor.
\param useAMG if true, AMG is used as a preconditioner for the elliptic sub-system, otherwise ilu-0 (default)
\param useBiCG if true, BiCG solver is used (default), otherwise CG solver
\param paralleInformation The information about the parallelization, if this is a
parallel run
*/
CPRPreconditioner (const CPRParameter& param, const M& A, const M& Ae,
const ParallelInformation& comm=ParallelInformation())
: param_( param ),
A_(A),
Ae_(Ae),
de_( Ae_.N() ),
ve_( Ae_.M() ),
dmodified_( A_.N() ),
opAe_(CPRSelector<M,X,Y,P>::makeOperator(Ae_, comm)),
precond_(), // ilu0 preconditioner for elliptic system
amg_(), // amg preconditioner for elliptic system
pre_(), // copy A will be made be the preconditioner
vilu_( A_.N() ),
comm_(comm)
{
// create appropriate preconditioner for elliptic system
createPreconditioner( param_.cpr_use_amg_, comm );
if( param_.cpr_ilu_n_ == 0 ) {
pre_ = createILU0Ptr<M,X>( A_, param_.cpr_relax_, comm );
}
else {
pre_ = createILUnPtr<M,X>( A_, param_.cpr_ilu_n_, param_.cpr_relax_, comm );
}
}
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&)
*/
2014-05-21 06:14:02 -05:00
virtual void pre (X& /*x*/, Y& /*b*/)
{
}
/*!
\brief Apply the preconditoner.
\copydoc Preconditioner::apply(X&,const Y&)
*/
virtual void apply (X& v, const Y& d)
{
// Extract part of d corresponding to elliptic part.
// Note: Assumes that the elliptic part comes first.
std::copy_n(d.begin(), de_.size(), de_.begin());
// Solve elliptic part, extend solution to full.
// reset result
ve_ = 0;
solveElliptic( ve_, de_ );
//reset return value
v = 0.0;
// Again assuming that the elliptic part comes first.
std::copy(ve_.begin(), ve_.end(), v.begin());
// Subtract elliptic residual from initial residual.
// dmodified = d - A * vfull
dmodified_ = d;
A_.mmv(v, dmodified_);
// Apply Preconditioner for whole system (relax will be applied already)
pre_->apply( vilu_, dmodified_);
// don't apply relaxation if relax_ == 1
if( std::abs( param_.cpr_relax_ - 1.0 ) < 1e-12 ) {
v += vilu_;
}
else {
v *= param_.cpr_relax_;
v += vilu_;
}
}
/*!
\brief Clean up.
\copydoc Preconditioner::post(X&)
*/
2014-05-21 06:14:02 -05:00
virtual void post (X& /*x*/)
{
}
protected:
void solveElliptic(Y& x, Y& de)
{
// Linear solver parameters
const double tolerance = param_.cpr_solver_tol_;
const int maxit = param_.cpr_max_ell_iter_;
const int verbosity = ( param_.cpr_solver_verbose_ &&
comm_.communicator().rank()==0 ) ? 1 : 0;
// operator result containing iterations etc.
Dune::InverseOperatorResult result;
// the scalar product chooser
typedef Dune::ScalarProductChooser<X,ParallelInformation,category>
ScalarProductChooser;
// the scalar product.
std::unique_ptr<typename ScalarProductChooser::ScalarProduct>
sp(ScalarProductChooser::construct(comm_));
if( amg_ )
{
// Solve system with AMG
if( param_.cpr_use_bicgstab_ ) {
Dune::BiCGSTABSolver<X> linsolve(*opAe_, *sp, (*amg_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
else {
Dune::CGSolver<X> linsolve(*opAe_, *sp, (*amg_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
}
else
{
assert( precond_ );
// Solve system with ILU-0
if( param_.cpr_use_bicgstab_ ) {
Dune::BiCGSTABSolver<X> linsolve(*opAe_, *sp, (*precond_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
else {
Dune::CGSolver<X> linsolve(*opAe_, *sp, (*precond_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
}
2014-08-14 07:19:55 -05:00
if (!result.converged) {
OPM_THROW(LinearSolverProblem, "CPRPreconditioner failed to solve elliptic subsystem.");
}
}
//! \brief Parameter collection for CPR
const CPRParameter& param_;
//! \brief The matrix for the full linear problem.
const matrix_type& A_;
//! \brief The elliptic part of the matrix.
const matrix_type& Ae_;
//! \brief temporary variables for elliptic solve
Y de_, ve_, dmodified_;
//! \brief elliptic operator
std::unique_ptr<Operator> opAe_;
//! \brief ILU0 preconditioner for the elliptic system
EllipticPreconditionerPointer precond_;
//! \brief AMG preconditioner with ILU0 smoother
std::unique_ptr< AMG > amg_;
//! \brief The preconditioner for the whole system
//!
//! We have to use a shared_ptr instead of a unique_ptr
//! as we need to use a custom allocator based on dynamic
//! information. But for unique_ptr the type of this deleter
//! has to be available at coompile time.
std::shared_ptr< WholeSystemPreconditioner > pre_;
//! \brief temporary variables for ILU solve
Y vilu_;
//! \brief The information about the parallelization
const P& comm_;
protected:
void createPreconditioner( const bool amg, const P& comm )
{
if( amg )
{
// The coupling metric used in the AMG
typedef Dune::Amg::FirstDiagonal CouplingMetric;
// The coupling criterion used in the AMG
typedef Dune::Amg::SymmetricCriterion<M, CouplingMetric> CritBase;
// The coarsening criterion used in the AMG
typedef Dune::Amg::CoarsenCriterion<CritBase> Criterion;
// TODO: revise choice of parameters
int coarsenTarget=1200;
Criterion criterion(15,coarsenTarget);
criterion.setDebugLevel( 0 ); // no debug information, 1 for printing hierarchy information
criterion.setDefaultValuesIsotropic(2);
criterion.setNoPostSmoothSteps( 1 );
criterion.setNoPreSmoothSteps( 1 );
// for DUNE 2.2 we also need to pass the smoother args
typedef typename AMG::Smoother Smoother;
typedef typename Dune::Amg::SmootherTraits<Smoother>::Arguments SmootherArgs;
SmootherArgs smootherArgs;
smootherArgs.iterations = 1;
smootherArgs.relaxationFactor = param_.cpr_relax_;
amg_ = std::unique_ptr< AMG > (new AMG(*opAe_, criterion, smootherArgs, comm ));
}
else
{
precond_ = createEllipticPreconditionerPointer<M,X>( Ae_, param_.cpr_relax_, comm);
}
}
};
} // namespace Opm
#endif // OPM_CPRPRECONDITIONER_HEADER_INCLUDED