opm-simulators/opm/models/blackoil/blackoildispersionmodule.hh

550 lines
22 KiB
C++
Raw Normal View History

2023-10-25 12:46:32 -05:00
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Classes required for mechanical dispersion.
*/
#ifndef EWOMS_DISPERSION_MODULE_HH
#define EWOMS_DISPERSION_MODULE_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <stdexcept>
namespace Opm {
/*!
* \ingroup Dispersion
* \class Opm::BlackOilDispersionModule
* \brief Provides the auxiliary methods required for consideration of the
* dispersion equation.
*/
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionModule;
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionExtensiveQuantities;
/*!
* \copydoc Opm::BlackOilDispersionModule
*/
template <class TypeTag>
class BlackOilDispersionModule<TypeTag, /*enableDispersion=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
enum { numPhases = FluidSystem::numPhases };
public:
using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities<TypeTag,false>;
2024-01-11 08:28:15 -06:00
#if HAVE_ECL_INPUT
static void initFromState(const EclipseState&)
{
}
#endif
2023-10-25 12:46:32 -05:00
/*!
* \brief Adds the dispersive flux to the flux vector over a flux
* integration point.
*/
template <class Context>
static void addDispersiveFlux(RateVector&,
const Context&,
unsigned,
unsigned)
{}
template<class FluidState, class Scalar>
static void addDispersiveFlux(RateVector&,
const FluidState&,
const FluidState&,
const Evaluation&,
const Scalar&)
{}
};
/*!
* \copydoc Opm::BlackOilDispersionModule
*/
template <class TypeTag>
class BlackOilDispersionModule<TypeTag, /*enableDispersion=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
using Toolbox = MathToolbox<Evaluation>;
public:
using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities<TypeTag,true>;
2024-01-11 08:28:15 -06:00
#if HAVE_ECL_INPUT
static void initFromState(const EclipseState& eclState)
{
if (!eclState.getSimulationConfig().rock_config().dispersion()) {
return;
}
2024-01-11 08:28:15 -06:00
if (eclState.getSimulationConfig().hasVAPWAT() || eclState.getSimulationConfig().hasVAPOIL()) {
OpmLog::warning("Dispersion is activated in combination with VAPWAT/VAPOIL. \n"
"Water/oil is still allowed to vaporize, but dispersion in the "
"gas phase is ignored.");
}
}
#endif
2023-10-25 12:46:32 -05:00
/*!
* \brief Adds the mass flux due to dispersion to the flux vector over the
* flux integration point.
*/
template <class Context>
static void addDispersiveFlux(RateVector& flux, const Context& context,
unsigned spaceIdx, unsigned timeIdx)
{
// Only work if dispersion is enabled by DISPERC in the deck
if (!context.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
return;
}
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
const auto& fluidStateI = context.intensiveQuantities(extQuants.interiorIndex(), timeIdx).fluidState();
const auto& fluidStateJ = context.intensiveQuantities(extQuants.exteriorIndex(), timeIdx).fluidState();
const auto& dispersivity = extQuants.dispersivity();
const auto& normVelocityAvg = extQuants.normVelocityAvg();
addDispersiveFlux(flux, fluidStateI, fluidStateJ, dispersivity, normVelocityAvg);
}
/*!
* \brief Adds the mass flux due to dispersion to the flux vector over the
* integration point. Following the notation in blackoilmodel.hh,
* the dispersive flux for component \f$\kappa\f$ in phase \f$\alpha\f$
* is given by: \f$-b_\alpha E||\mathrm{v}_\alpha||\mathbf{grad}X_\alpha^\kappa\f$,
* where \f$b_\alpha\f$ is the shrinkage/expansion factor [-], E is the isotropic
* dispersivity coefficient [L], \f$\mathrm{v}_\alpha\f$ is the filter velocity
* [L/T], and \f$X_\alpha^\kappa\f$ the component mass fraction [-]. Each component mass
* fraction can be computed using \f$R_s,\;R_v,\;R_{sw},\;R_{vw}\f$. For example,
* \f$X_w^G=\frac{R_{sw}}{R_{sw}+\rho_w/\rho_g}\f$, where \f$\rho_w\f$ and \f$\rho_g\f$
* are the reference densities.
* Following the implementation of the diffusive flux (blackoildiffusionmodule.hh) and considering
* the case for the water phase and gas component as an example, for cells i and j, the discrete version
* of the dispersive flux at the face's integration point is given by
* \f$-b_{w,ij}v_{w,ij}(\frac{1}{R_{sw,ij}+\rho_w/\rho_g})D_{ij}(R_{sw,i}-R_{sw,j})\f$
* where \f$b_{w,ij}\f$, \f$v_{w,ij}\f$, and \f$R_{sw,ij}\f$ are computed using the arithmetic mean, and
* the ratio \f$\frac{1}{R_{sw,ij}+\rho_w/\rho_g}\f$ is denoted as conversion factor. The dispersivity
* \f$D_{ij}\f$ is computed in ecltransmissibility_impl.hh, using the dispersion coefficients \f$E_i\f$
* and \f$E_j\f$.
*/
template<class FluidState, class Scalar>
static void addDispersiveFlux(RateVector& flux,
const FluidState& fluidStateI,
const FluidState& fluidStateJ,
const Evaluation& dispersivity,
const Scalar& normVelocityAvg)
{
unsigned pvtRegionIndex = fluidStateI.pvtRegionIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
// no dispersion in water for blackoil models unless water can contain dissolved gas
if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
continue;
}
2024-01-11 08:28:15 -06:00
// Adding dispersion in the gas phase leads to
// convergence issues and unphysical results.
// We disable dispersion in the gas phase for now
if (FluidSystem::gasPhaseIdx == phaseIdx) {
continue;
}
2023-10-25 12:46:32 -05:00
// no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
continue;
}
// arithmetic mean of the phase's b factor
Evaluation bAvg = fluidStateI.invB(phaseIdx);
bAvg += Toolbox::value(fluidStateJ.invB(phaseIdx));
bAvg /= 2;
Evaluation convFactor = 1.0;
Evaluation diffR = 0.0;
if (FluidSystem::enableDissolvedGas() && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && phaseIdx == FluidSystem::oilPhaseIdx) {
Evaluation rsAvg = (fluidStateI.Rs() + Toolbox::value(fluidStateJ.Rs())) / 2;
convFactor = 1.0 / (toMassFractionGasOil(pvtRegionIndex) + rsAvg);
diffR = fluidStateI.Rs() - Toolbox::value(fluidStateJ.Rs());
}
if (FluidSystem::enableVaporizedOil() && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && phaseIdx == FluidSystem::gasPhaseIdx) {
Evaluation rvAvg = (fluidStateI.Rv() + Toolbox::value(fluidStateJ.Rv())) / 2;
convFactor = toMassFractionGasOil(pvtRegionIndex) / (1.0 + rvAvg*toMassFractionGasOil(pvtRegionIndex));
diffR = fluidStateI.Rv() - Toolbox::value(fluidStateJ.Rv());
}
if (FluidSystem::enableDissolvedGasInWater() && phaseIdx == FluidSystem::waterPhaseIdx) {
Evaluation rsAvg = (fluidStateI.Rsw() + Toolbox::value(fluidStateJ.Rsw())) / 2;
convFactor = 1.0 / (toMassFractionGasWater(pvtRegionIndex) + rsAvg);
diffR = fluidStateI.Rsw() - Toolbox::value(fluidStateJ.Rsw());
}
if (FluidSystem::enableVaporizedWater() && phaseIdx == FluidSystem::gasPhaseIdx) {
Evaluation rvAvg = (fluidStateI.Rvw() + Toolbox::value(fluidStateJ.Rvw())) / 2;
convFactor = toMassFractionGasWater(pvtRegionIndex)/ (1.0 + rvAvg*toMassFractionGasWater(pvtRegionIndex));
diffR = fluidStateI.Rvw() - Toolbox::value(fluidStateJ.Rvw());
}
// mass flux of solvent component
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
flux[conti0EqIdx + activeSolventCompIdx] +=
- bAvg
* normVelocityAvg[phaseIdx]
* convFactor
* dispersivity
* diffR;
// mass flux of solute component
unsigned soluteCompIdx = FluidSystem::soluteComponentIndex(phaseIdx);
unsigned activeSoluteCompIdx = Indices::canonicalToActiveComponentIndex(soluteCompIdx);
flux[conti0EqIdx + activeSoluteCompIdx] +=
bAvg
* normVelocityAvg[phaseIdx]
* convFactor
* dispersivity
* diffR;
}
}
private:
2024-01-11 08:28:15 -06:00
2023-10-25 12:46:32 -05:00
static Scalar toMassFractionGasOil (unsigned regionIdx) {
Scalar rhoO = FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, regionIdx);
Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
return rhoO / rhoG;
}
static Scalar toMassFractionGasWater (unsigned regionIdx) {
Scalar rhoW = FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, regionIdx);
Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
return rhoW / rhoG;
}
};
/*!
* \ingroup Dispersion
* \class Opm::BlackOilDispersionIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the
* calculation of dispersive fluxes.
*/
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionIntensiveQuantities;
/*!
* \copydoc Opm::DispersionIntensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionIntensiveQuantities<TypeTag, /*enableDispersion=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
/*!
* \brief Returns the max. norm of the filter velocity of the cell.
*/
Scalar normVelocityCell(unsigned, unsigned) const
{
throw std::logic_error("Method normVelocityCell() "
"does not make sense if dispersion is disabled");
}
protected:
/*!
* \brief Update the quantities required to calculate dispersive
* fluxes.
*/
template<class ElementContext>
void update_(ElementContext&,
unsigned,
unsigned)
{ }
};
/*!
* \copydoc Opm::DispersionIntensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionIntensiveQuantities<TypeTag, /*enableDispersion=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
public:
/*!
* \brief Returns the max. norm of the filter velocity of the cell.
*/
Scalar normVelocityCell(unsigned phaseIdx) const
{
return normVelocityCell_[phaseIdx];
}
protected:
/*!
* \brief Update the quantities required to calculate dispersive
* mass fluxes. This considers the linear disperison model
* described in the SPE CSP11 benchmark document (eq. 2.3)
* https://github.com/Simulation-Benchmarks/11thSPE-CSP/
* blob/main/description/spe_csp11_description.pdf
* The maximum norm is used to compute the cell
* filter velocity value of the corresponding phase.
*/
template<class ElementContext>
void update_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
// Only work if dispersion is enabled by DISPERC in the deck
if (!elemCtx.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
return;
}
const auto& problem = elemCtx.simulator().problem();
if (problem.model().linearizer().getVelocityInfo().empty()) {
return;
}
const std::array<int, 3> phaseIdxs = { gasPhaseIdx, oilPhaseIdx, waterPhaseIdx };
const std::array<int, 3> compIdxs = { gasCompIdx, oilCompIdx, waterCompIdx };
const auto& velocityInf = problem.model().linearizer().getVelocityInfo();
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
auto velocityInfos = velocityInf[globalDofIdx];
for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
normVelocityCell_[i] = 0;
}
for (auto& velocityInfo : velocityInfos) {
for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
if (FluidSystem::phaseIsActive(phaseIdxs[i])) {
normVelocityCell_[phaseIdxs[i]] = max( normVelocityCell_[phaseIdxs[i]],
std::abs( velocityInfo.velocity[conti0EqIdx
+ Indices::canonicalToActiveComponentIndex(compIdxs[i])] ));
}
}
}
}
private:
Scalar normVelocityCell_[numPhases];
};
/*!
* \ingroup Dispersion
* \class Opm::BlackOilDispersionExtensiveQuantities
*
* \brief Provides the quantities required to calculate dispersive mass fluxes.
*/
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionExtensiveQuantities;
/*!
* \copydoc Opm::DispersionExtensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionExtensiveQuantities<TypeTag, /*enableDispersion=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
enum { numPhases = FluidSystem::numPhases };
protected:
/*!
* \brief Update the quantities required to calculate
* the dispersive fluxes.
*/
void update_(const ElementContext&,
unsigned,
unsigned)
{}
template <class Context, class FluidState>
void updateBoundary_(const Context&,
unsigned,
unsigned,
const FluidState&)
{}
public:
using ScalarArray = Scalar[numPhases];
static void update(ScalarArray&,
const IntensiveQuantities&,
const IntensiveQuantities&)
{}
/*!
* \brief The dispersivity the face.
*
*/
const Scalar& dispersivity() const
{
throw std::logic_error("The method dispersivity() does not "
"make sense if dispersion is disabled.");
}
/*!
* \brief The effective filter velocity coefficient in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Scalar& normVelocityAvg(unsigned) const
{
throw std::logic_error("The method normVelocityAvg() "
"does not make sense if dispersion is disabled.");
}
};
/*!
* \copydoc Opm::BlackOilDispersionExtensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionExtensiveQuantities<TypeTag, /*enableDispersion=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Toolbox = MathToolbox<Evaluation>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
public:
using ScalarArray = Scalar[numPhases];
static void update(ScalarArray& normVelocityAvg,
const IntensiveQuantities& intQuantsInside,
const IntensiveQuantities& intQuantsOutside)
{
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
// no dispersion in water for blackoil models unless water can contain dissolved gas
if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
continue;
}
// no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
continue;
}
// use the arithmetic average for the effective
// velocity coefficients at the face's integration point.
normVelocityAvg[phaseIdx] = 0.5 *
( intQuantsInside.normVelocityCell(phaseIdx) +
intQuantsOutside.normVelocityCell(phaseIdx) );
Valgrind::CheckDefined(normVelocityAvg[phaseIdx]);
}
}
protected:
template <class Context, class FluidState>
void updateBoundary_(const Context&,
unsigned,
unsigned,
const FluidState&)
{
throw std::runtime_error("Not implemented: Dispersion across boundary not implemented for blackoil");
}
public:
/*!
* \brief The dispersivity of the face.
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Scalar& dispersivity() const
{ return dispersivity_; }
/*!
* \brief The effective velocity coefficient in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Scalar& normVelocityAvg(unsigned phaseIdx) const
{ return normVelocityAvg_[phaseIdx]; }
const auto& normVelocityAvg() const{
return normVelocityAvg_;
}
private:
Scalar dispersivity_;
ScalarArray normVelocityAvg_;
};
} // namespace Opm
#endif