mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-11 08:51:55 -06:00
550 lines
22 KiB
C++
550 lines
22 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief Classes required for mechanical dispersion.
|
|
*/
|
|
#ifndef EWOMS_DISPERSION_MODULE_HH
|
|
#define EWOMS_DISPERSION_MODULE_HH
|
|
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <stdexcept>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup Dispersion
|
|
* \class Opm::BlackOilDispersionModule
|
|
* \brief Provides the auxiliary methods required for consideration of the
|
|
* dispersion equation.
|
|
*/
|
|
template <class TypeTag, bool enableDispersion>
|
|
class BlackOilDispersionModule;
|
|
|
|
template <class TypeTag, bool enableDispersion>
|
|
class BlackOilDispersionExtensiveQuantities;
|
|
|
|
/*!
|
|
* \copydoc Opm::BlackOilDispersionModule
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilDispersionModule<TypeTag, /*enableDispersion=*/false>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
|
|
public:
|
|
using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities<TypeTag,false>;
|
|
|
|
#if HAVE_ECL_INPUT
|
|
static void initFromState(const EclipseState&)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*!
|
|
* \brief Adds the dispersive flux to the flux vector over a flux
|
|
* integration point.
|
|
*/
|
|
template <class Context>
|
|
static void addDispersiveFlux(RateVector&,
|
|
const Context&,
|
|
unsigned,
|
|
unsigned)
|
|
{}
|
|
|
|
template<class FluidState, class Scalar>
|
|
static void addDispersiveFlux(RateVector&,
|
|
const FluidState&,
|
|
const FluidState&,
|
|
const Evaluation&,
|
|
const Scalar&)
|
|
{}
|
|
};
|
|
|
|
/*!
|
|
* \copydoc Opm::BlackOilDispersionModule
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilDispersionModule<TypeTag, /*enableDispersion=*/true>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
|
|
public:
|
|
using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities<TypeTag,true>;
|
|
#if HAVE_ECL_INPUT
|
|
static void initFromState(const EclipseState& eclState)
|
|
{
|
|
if (!eclState.getSimulationConfig().rock_config().dispersion()) {
|
|
return;
|
|
}
|
|
|
|
if (eclState.getSimulationConfig().hasVAPWAT() || eclState.getSimulationConfig().hasVAPOIL()) {
|
|
OpmLog::warning("Dispersion is activated in combination with VAPWAT/VAPOIL. \n"
|
|
"Water/oil is still allowed to vaporize, but dispersion in the "
|
|
"gas phase is ignored.");
|
|
}
|
|
}
|
|
#endif
|
|
/*!
|
|
* \brief Adds the mass flux due to dispersion to the flux vector over the
|
|
* flux integration point.
|
|
*/
|
|
template <class Context>
|
|
static void addDispersiveFlux(RateVector& flux, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx)
|
|
{
|
|
// Only work if dispersion is enabled by DISPERC in the deck
|
|
if (!context.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
|
|
return;
|
|
}
|
|
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
|
|
const auto& fluidStateI = context.intensiveQuantities(extQuants.interiorIndex(), timeIdx).fluidState();
|
|
const auto& fluidStateJ = context.intensiveQuantities(extQuants.exteriorIndex(), timeIdx).fluidState();
|
|
const auto& dispersivity = extQuants.dispersivity();
|
|
const auto& normVelocityAvg = extQuants.normVelocityAvg();
|
|
addDispersiveFlux(flux, fluidStateI, fluidStateJ, dispersivity, normVelocityAvg);
|
|
}
|
|
|
|
/*!
|
|
* \brief Adds the mass flux due to dispersion to the flux vector over the
|
|
* integration point. Following the notation in blackoilmodel.hh,
|
|
* the dispersive flux for component \f$\kappa\f$ in phase \f$\alpha\f$
|
|
* is given by: \f$-b_\alpha E||\mathrm{v}_\alpha||\mathbf{grad}X_\alpha^\kappa\f$,
|
|
* where \f$b_\alpha\f$ is the shrinkage/expansion factor [-], E is the isotropic
|
|
* dispersivity coefficient [L], \f$\mathrm{v}_\alpha\f$ is the filter velocity
|
|
* [L/T], and \f$X_\alpha^\kappa\f$ the component mass fraction [-]. Each component mass
|
|
* fraction can be computed using \f$R_s,\;R_v,\;R_{sw},\;R_{vw}\f$. For example,
|
|
* \f$X_w^G=\frac{R_{sw}}{R_{sw}+\rho_w/\rho_g}\f$, where \f$\rho_w\f$ and \f$\rho_g\f$
|
|
* are the reference densities.
|
|
* Following the implementation of the diffusive flux (blackoildiffusionmodule.hh) and considering
|
|
* the case for the water phase and gas component as an example, for cells i and j, the discrete version
|
|
* of the dispersive flux at the face's integration point is given by
|
|
* \f$-b_{w,ij}v_{w,ij}(\frac{1}{R_{sw,ij}+\rho_w/\rho_g})D_{ij}(R_{sw,i}-R_{sw,j})\f$
|
|
* where \f$b_{w,ij}\f$, \f$v_{w,ij}\f$, and \f$R_{sw,ij}\f$ are computed using the arithmetic mean, and
|
|
* the ratio \f$\frac{1}{R_{sw,ij}+\rho_w/\rho_g}\f$ is denoted as conversion factor. The dispersivity
|
|
* \f$D_{ij}\f$ is computed in ecltransmissibility_impl.hh, using the dispersion coefficients \f$E_i\f$
|
|
* and \f$E_j\f$.
|
|
*/
|
|
template<class FluidState, class Scalar>
|
|
static void addDispersiveFlux(RateVector& flux,
|
|
const FluidState& fluidStateI,
|
|
const FluidState& fluidStateJ,
|
|
const Evaluation& dispersivity,
|
|
const Scalar& normVelocityAvg)
|
|
{
|
|
unsigned pvtRegionIndex = fluidStateI.pvtRegionIndex();
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
// no dispersion in water for blackoil models unless water can contain dissolved gas
|
|
if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
|
|
continue;
|
|
}
|
|
|
|
// Adding dispersion in the gas phase leads to
|
|
// convergence issues and unphysical results.
|
|
// We disable dispersion in the gas phase for now
|
|
if (FluidSystem::gasPhaseIdx == phaseIdx) {
|
|
continue;
|
|
}
|
|
|
|
// no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
|
|
if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
|
|
continue;
|
|
}
|
|
|
|
// arithmetic mean of the phase's b factor
|
|
Evaluation bAvg = fluidStateI.invB(phaseIdx);
|
|
bAvg += Toolbox::value(fluidStateJ.invB(phaseIdx));
|
|
bAvg /= 2;
|
|
|
|
Evaluation convFactor = 1.0;
|
|
Evaluation diffR = 0.0;
|
|
if (FluidSystem::enableDissolvedGas() && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && phaseIdx == FluidSystem::oilPhaseIdx) {
|
|
Evaluation rsAvg = (fluidStateI.Rs() + Toolbox::value(fluidStateJ.Rs())) / 2;
|
|
convFactor = 1.0 / (toMassFractionGasOil(pvtRegionIndex) + rsAvg);
|
|
diffR = fluidStateI.Rs() - Toolbox::value(fluidStateJ.Rs());
|
|
}
|
|
if (FluidSystem::enableVaporizedOil() && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && phaseIdx == FluidSystem::gasPhaseIdx) {
|
|
Evaluation rvAvg = (fluidStateI.Rv() + Toolbox::value(fluidStateJ.Rv())) / 2;
|
|
convFactor = toMassFractionGasOil(pvtRegionIndex) / (1.0 + rvAvg*toMassFractionGasOil(pvtRegionIndex));
|
|
diffR = fluidStateI.Rv() - Toolbox::value(fluidStateJ.Rv());
|
|
}
|
|
if (FluidSystem::enableDissolvedGasInWater() && phaseIdx == FluidSystem::waterPhaseIdx) {
|
|
Evaluation rsAvg = (fluidStateI.Rsw() + Toolbox::value(fluidStateJ.Rsw())) / 2;
|
|
convFactor = 1.0 / (toMassFractionGasWater(pvtRegionIndex) + rsAvg);
|
|
diffR = fluidStateI.Rsw() - Toolbox::value(fluidStateJ.Rsw());
|
|
}
|
|
if (FluidSystem::enableVaporizedWater() && phaseIdx == FluidSystem::gasPhaseIdx) {
|
|
Evaluation rvAvg = (fluidStateI.Rvw() + Toolbox::value(fluidStateJ.Rvw())) / 2;
|
|
convFactor = toMassFractionGasWater(pvtRegionIndex)/ (1.0 + rvAvg*toMassFractionGasWater(pvtRegionIndex));
|
|
diffR = fluidStateI.Rvw() - Toolbox::value(fluidStateJ.Rvw());
|
|
}
|
|
|
|
// mass flux of solvent component
|
|
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
|
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
|
|
flux[conti0EqIdx + activeSolventCompIdx] +=
|
|
- bAvg
|
|
* normVelocityAvg[phaseIdx]
|
|
* convFactor
|
|
* dispersivity
|
|
* diffR;
|
|
|
|
// mass flux of solute component
|
|
unsigned soluteCompIdx = FluidSystem::soluteComponentIndex(phaseIdx);
|
|
unsigned activeSoluteCompIdx = Indices::canonicalToActiveComponentIndex(soluteCompIdx);
|
|
flux[conti0EqIdx + activeSoluteCompIdx] +=
|
|
bAvg
|
|
* normVelocityAvg[phaseIdx]
|
|
* convFactor
|
|
* dispersivity
|
|
* diffR;
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
static Scalar toMassFractionGasOil (unsigned regionIdx) {
|
|
Scalar rhoO = FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, regionIdx);
|
|
Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
|
|
return rhoO / rhoG;
|
|
}
|
|
static Scalar toMassFractionGasWater (unsigned regionIdx) {
|
|
Scalar rhoW = FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, regionIdx);
|
|
Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
|
|
return rhoW / rhoG;
|
|
}
|
|
};
|
|
|
|
/*!
|
|
* \ingroup Dispersion
|
|
* \class Opm::BlackOilDispersionIntensiveQuantities
|
|
*
|
|
* \brief Provides the volumetric quantities required for the
|
|
* calculation of dispersive fluxes.
|
|
*/
|
|
template <class TypeTag, bool enableDispersion>
|
|
class BlackOilDispersionIntensiveQuantities;
|
|
|
|
/*!
|
|
* \copydoc Opm::DispersionIntensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilDispersionIntensiveQuantities<TypeTag, /*enableDispersion=*/false>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Returns the max. norm of the filter velocity of the cell.
|
|
*/
|
|
Scalar normVelocityCell(unsigned, unsigned) const
|
|
{
|
|
throw std::logic_error("Method normVelocityCell() "
|
|
"does not make sense if dispersion is disabled");
|
|
}
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the quantities required to calculate dispersive
|
|
* fluxes.
|
|
*/
|
|
template<class ElementContext>
|
|
void update_(ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{ }
|
|
};
|
|
|
|
/*!
|
|
* \copydoc Opm::DispersionIntensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilDispersionIntensiveQuantities<TypeTag, /*enableDispersion=*/true>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
|
|
|
|
public:
|
|
/*!
|
|
* \brief Returns the max. norm of the filter velocity of the cell.
|
|
*/
|
|
Scalar normVelocityCell(unsigned phaseIdx) const
|
|
{
|
|
|
|
return normVelocityCell_[phaseIdx];
|
|
}
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the quantities required to calculate dispersive
|
|
* mass fluxes. This considers the linear disperison model
|
|
* described in the SPE CSP11 benchmark document (eq. 2.3)
|
|
* https://github.com/Simulation-Benchmarks/11thSPE-CSP/
|
|
* blob/main/description/spe_csp11_description.pdf
|
|
* The maximum norm is used to compute the cell
|
|
* filter velocity value of the corresponding phase.
|
|
*/
|
|
template<class ElementContext>
|
|
void update_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
|
|
{
|
|
// Only work if dispersion is enabled by DISPERC in the deck
|
|
if (!elemCtx.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
|
|
return;
|
|
}
|
|
const auto& problem = elemCtx.simulator().problem();
|
|
if (problem.model().linearizer().getVelocityInfo().empty()) {
|
|
return;
|
|
}
|
|
const std::array<int, 3> phaseIdxs = { gasPhaseIdx, oilPhaseIdx, waterPhaseIdx };
|
|
const std::array<int, 3> compIdxs = { gasCompIdx, oilCompIdx, waterCompIdx };
|
|
const auto& velocityInf = problem.model().linearizer().getVelocityInfo();
|
|
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
|
auto velocityInfos = velocityInf[globalDofIdx];
|
|
for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
|
|
normVelocityCell_[i] = 0;
|
|
}
|
|
for (auto& velocityInfo : velocityInfos) {
|
|
for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
|
|
if (FluidSystem::phaseIsActive(phaseIdxs[i])) {
|
|
normVelocityCell_[phaseIdxs[i]] = max( normVelocityCell_[phaseIdxs[i]],
|
|
std::abs( velocityInfo.velocity[conti0EqIdx
|
|
+ Indices::canonicalToActiveComponentIndex(compIdxs[i])] ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
Scalar normVelocityCell_[numPhases];
|
|
};
|
|
|
|
/*!
|
|
* \ingroup Dispersion
|
|
* \class Opm::BlackOilDispersionExtensiveQuantities
|
|
*
|
|
* \brief Provides the quantities required to calculate dispersive mass fluxes.
|
|
*/
|
|
template <class TypeTag, bool enableDispersion>
|
|
class BlackOilDispersionExtensiveQuantities;
|
|
|
|
/*!
|
|
* \copydoc Opm::DispersionExtensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilDispersionExtensiveQuantities<TypeTag, /*enableDispersion=*/false>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the quantities required to calculate
|
|
* the dispersive fluxes.
|
|
*/
|
|
void update_(const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{}
|
|
|
|
template <class Context, class FluidState>
|
|
void updateBoundary_(const Context&,
|
|
unsigned,
|
|
unsigned,
|
|
const FluidState&)
|
|
{}
|
|
|
|
public:
|
|
using ScalarArray = Scalar[numPhases];
|
|
|
|
static void update(ScalarArray&,
|
|
const IntensiveQuantities&,
|
|
const IntensiveQuantities&)
|
|
{}
|
|
|
|
/*!
|
|
* \brief The dispersivity the face.
|
|
*
|
|
*/
|
|
const Scalar& dispersivity() const
|
|
{
|
|
throw std::logic_error("The method dispersivity() does not "
|
|
"make sense if dispersion is disabled.");
|
|
}
|
|
|
|
/*!
|
|
* \brief The effective filter velocity coefficient in a
|
|
* fluid phase at the face's integration point
|
|
*
|
|
* \copydoc Doxygen::phaseIdxParam
|
|
* \copydoc Doxygen::compIdxParam
|
|
*/
|
|
const Scalar& normVelocityAvg(unsigned) const
|
|
{
|
|
throw std::logic_error("The method normVelocityAvg() "
|
|
"does not make sense if dispersion is disabled.");
|
|
}
|
|
|
|
};
|
|
|
|
/*!
|
|
* \copydoc Opm::BlackOilDispersionExtensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilDispersionExtensiveQuantities<TypeTag, /*enableDispersion=*/true>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
|
|
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
|
|
using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
|
|
public:
|
|
using ScalarArray = Scalar[numPhases];
|
|
static void update(ScalarArray& normVelocityAvg,
|
|
const IntensiveQuantities& intQuantsInside,
|
|
const IntensiveQuantities& intQuantsOutside)
|
|
{
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
// no dispersion in water for blackoil models unless water can contain dissolved gas
|
|
if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
|
|
continue;
|
|
}
|
|
// no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
|
|
if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
|
|
continue;
|
|
}
|
|
// use the arithmetic average for the effective
|
|
// velocity coefficients at the face's integration point.
|
|
normVelocityAvg[phaseIdx] = 0.5 *
|
|
( intQuantsInside.normVelocityCell(phaseIdx) +
|
|
intQuantsOutside.normVelocityCell(phaseIdx) );
|
|
Valgrind::CheckDefined(normVelocityAvg[phaseIdx]);
|
|
}
|
|
}
|
|
protected:
|
|
template <class Context, class FluidState>
|
|
void updateBoundary_(const Context&,
|
|
unsigned,
|
|
unsigned,
|
|
const FluidState&)
|
|
{
|
|
throw std::runtime_error("Not implemented: Dispersion across boundary not implemented for blackoil");
|
|
}
|
|
|
|
public:
|
|
/*!
|
|
* \brief The dispersivity of the face.
|
|
*
|
|
* \copydoc Doxygen::phaseIdxParam
|
|
* \copydoc Doxygen::compIdxParam
|
|
*/
|
|
const Scalar& dispersivity() const
|
|
{ return dispersivity_; }
|
|
|
|
/*!
|
|
* \brief The effective velocity coefficient in a
|
|
* fluid phase at the face's integration point
|
|
*
|
|
* \copydoc Doxygen::phaseIdxParam
|
|
* \copydoc Doxygen::compIdxParam
|
|
*/
|
|
const Scalar& normVelocityAvg(unsigned phaseIdx) const
|
|
{ return normVelocityAvg_[phaseIdx]; }
|
|
|
|
const auto& normVelocityAvg() const{
|
|
return normVelocityAvg_;
|
|
}
|
|
|
|
private:
|
|
Scalar dispersivity_;
|
|
ScalarArray normVelocityAvg_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|