2022-06-24 08:56:05 -05:00
|
|
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
|
|
/*
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
|
|
module for the precise wording of the license and the list of
|
|
|
|
copyright holders.
|
|
|
|
*/
|
|
|
|
/*!
|
|
|
|
* \file
|
|
|
|
*
|
|
|
|
* \copydoc Opm::FvBaseLinearizer
|
|
|
|
*/
|
|
|
|
#ifndef TPFA_LINEARIZER_HH
|
|
|
|
#define TPFA_LINEARIZER_HH
|
|
|
|
|
|
|
|
#include "fvbaseproperties.hh"
|
|
|
|
#include "linearizationtype.hh"
|
|
|
|
|
|
|
|
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
|
|
|
|
|
|
|
#include <opm/material/common/Exceptions.hpp>
|
|
|
|
#include <opm/grid/utility/SparseTable.hpp>
|
|
|
|
|
|
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
|
|
|
|
#include <type_traits>
|
|
|
|
#include <iostream>
|
|
|
|
#include <vector>
|
|
|
|
#include <thread>
|
|
|
|
#include <set>
|
|
|
|
#include <exception> // current_exception, rethrow_exception
|
|
|
|
#include <mutex>
|
|
|
|
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
// forward declarations
|
|
|
|
template<class TypeTag>
|
|
|
|
class EcfvDiscretization;
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \ingroup FiniteVolumeDiscretizations
|
|
|
|
*
|
|
|
|
* \brief The common code for the linearizers of non-linear systems of equations
|
|
|
|
*
|
|
|
|
* This class assumes that these system of equations to be linearized are stemming from
|
|
|
|
* models that use an finite volume scheme for spatial discretization and an Euler
|
|
|
|
* scheme for time discretization.
|
|
|
|
*/
|
|
|
|
template<class TypeTag>
|
|
|
|
class TpfaLinearizer
|
|
|
|
{
|
|
|
|
//! \cond SKIP_THIS
|
|
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
|
|
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
|
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
|
|
|
|
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
|
|
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
|
|
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
|
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
|
|
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
|
|
|
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
|
|
|
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
|
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
|
|
|
|
|
|
using Element = typename GridView::template Codim<0>::Entity;
|
|
|
|
using ElementIterator = typename GridView::template Codim<0>::Iterator;
|
|
|
|
|
|
|
|
using Vector = GlobalEqVector;
|
|
|
|
|
|
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
|
|
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
|
|
|
|
|
|
|
|
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
|
|
|
|
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
|
|
|
|
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
|
|
|
|
|
|
|
|
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
|
|
|
|
|
|
|
|
// copying the linearizer is not a good idea
|
|
|
|
TpfaLinearizer(const TpfaLinearizer&);
|
|
|
|
//! \endcond
|
|
|
|
|
|
|
|
public:
|
|
|
|
TpfaLinearizer()
|
|
|
|
: jacobian_()
|
|
|
|
{
|
|
|
|
simulatorPtr_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
~TpfaLinearizer()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Register all run-time parameters for the Jacobian linearizer.
|
|
|
|
*/
|
|
|
|
static void registerParameters()
|
|
|
|
{ }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Initialize the linearizer.
|
|
|
|
*
|
|
|
|
* At this point we can assume that all objects in the simulator
|
|
|
|
* have been allocated. We cannot assume that they are fully
|
|
|
|
* initialized, though.
|
|
|
|
*
|
|
|
|
* \copydetails Doxygen::simulatorParam
|
|
|
|
*/
|
|
|
|
void init(Simulator& simulator)
|
|
|
|
{
|
|
|
|
simulatorPtr_ = &simulator;
|
|
|
|
eraseMatrix();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Causes the Jacobian matrix to be recreated from scratch before the next
|
|
|
|
* iteration.
|
|
|
|
*
|
|
|
|
* This method is usally called if the sparsity pattern has changed for some
|
|
|
|
* reason. (e.g. by modifications of the grid or changes of the auxiliary equations.)
|
|
|
|
*/
|
|
|
|
void eraseMatrix()
|
|
|
|
{
|
|
|
|
jacobian_.reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Linearize the full system of non-linear equations.
|
|
|
|
*
|
|
|
|
* The linearizationType() controls the scheme used and the focus
|
|
|
|
* time index. The default is fully implicit scheme, and focus index
|
|
|
|
* equal to 0, i.e. current time (end of step).
|
|
|
|
*
|
|
|
|
* This linearizes the spatial domain and all auxiliary equations.
|
|
|
|
*/
|
|
|
|
void linearize()
|
|
|
|
{
|
|
|
|
linearizeDomain();
|
|
|
|
linearizeAuxiliaryEquations();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Linearize the part of the non-linear system of equations that is associated
|
|
|
|
* with the spatial domain.
|
|
|
|
*
|
|
|
|
* That means that the global Jacobian of the residual is assembled and the residual
|
|
|
|
* is evaluated for the current solution.
|
|
|
|
*
|
|
|
|
* The current state of affairs (esp. the previous and the current solutions) is
|
|
|
|
* represented by the model object.
|
|
|
|
*/
|
|
|
|
void linearizeDomain()
|
|
|
|
{
|
|
|
|
// we defer the initialization of the Jacobian matrix until here because the
|
|
|
|
// auxiliary modules usually assume the problem, model and grid to be fully
|
|
|
|
// initialized...
|
|
|
|
if (!jacobian_)
|
|
|
|
initFirstIteration_();
|
|
|
|
|
|
|
|
int succeeded;
|
|
|
|
try {
|
|
|
|
linearize_();
|
|
|
|
succeeded = 1;
|
|
|
|
}
|
|
|
|
catch (const std::exception& e)
|
|
|
|
{
|
|
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
|
|
<< " caught an exception while linearizing:" << e.what()
|
|
|
|
<< "\n" << std::flush;
|
|
|
|
succeeded = 0;
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
|
|
<< " caught an exception while linearizing"
|
|
|
|
<< "\n" << std::flush;
|
|
|
|
succeeded = 0;
|
|
|
|
}
|
|
|
|
succeeded = gridView_().comm().min(succeeded);
|
|
|
|
|
|
|
|
if (!succeeded)
|
|
|
|
throw NumericalIssue("A process did not succeed in linearizing the system");
|
|
|
|
}
|
|
|
|
|
|
|
|
void finalize()
|
|
|
|
{ jacobian_->finalize(); }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Linearize the part of the non-linear system of equations that is associated
|
|
|
|
* with the spatial domain.
|
|
|
|
*/
|
|
|
|
void linearizeAuxiliaryEquations()
|
|
|
|
{
|
|
|
|
// flush possible local caches into matrix structure
|
|
|
|
jacobian_->commit();
|
|
|
|
|
|
|
|
auto& model = model_();
|
|
|
|
const auto& comm = simulator_().gridView().comm();
|
|
|
|
for (unsigned auxModIdx = 0; auxModIdx < model.numAuxiliaryModules(); ++auxModIdx) {
|
|
|
|
bool succeeded = true;
|
|
|
|
try {
|
|
|
|
model.auxiliaryModule(auxModIdx)->linearize(*jacobian_, residual_);
|
|
|
|
}
|
|
|
|
catch (const std::exception& e) {
|
|
|
|
succeeded = false;
|
|
|
|
|
|
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
|
|
<< " caught an exception while linearizing:" << e.what()
|
|
|
|
<< "\n" << std::flush;
|
|
|
|
}
|
|
|
|
|
|
|
|
succeeded = comm.min(succeeded);
|
|
|
|
|
|
|
|
if (!succeeded)
|
|
|
|
throw NumericalIssue("linearization of an auxiliary equation failed");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Return constant reference to global Jacobian matrix backend.
|
|
|
|
*/
|
|
|
|
const SparseMatrixAdapter& jacobian() const
|
|
|
|
{ return *jacobian_; }
|
|
|
|
|
|
|
|
SparseMatrixAdapter& jacobian()
|
|
|
|
{ return *jacobian_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Return constant reference to global residual vector.
|
|
|
|
*/
|
|
|
|
const GlobalEqVector& residual() const
|
|
|
|
{ return residual_; }
|
|
|
|
|
|
|
|
GlobalEqVector& residual()
|
|
|
|
{ return residual_; }
|
|
|
|
|
|
|
|
void setLinearizationType(LinearizationType linearizationType){
|
|
|
|
linearizationType_ = linearizationType;
|
|
|
|
};
|
|
|
|
|
|
|
|
const LinearizationType& getLinearizationType() const{
|
|
|
|
return linearizationType_;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Returns the map of constraint degrees of freedom.
|
|
|
|
*
|
|
|
|
* (This object is only non-empty if the EnableConstraints property is true.)
|
|
|
|
*/
|
2022-06-29 09:32:19 -05:00
|
|
|
const std::map<unsigned, Constraints> constraintsMap() const
|
|
|
|
{ return {}; }
|
2022-06-24 08:56:05 -05:00
|
|
|
|
|
|
|
private:
|
|
|
|
Simulator& simulator_()
|
|
|
|
{ return *simulatorPtr_; }
|
|
|
|
const Simulator& simulator_() const
|
|
|
|
{ return *simulatorPtr_; }
|
|
|
|
|
|
|
|
Problem& problem_()
|
|
|
|
{ return simulator_().problem(); }
|
|
|
|
const Problem& problem_() const
|
|
|
|
{ return simulator_().problem(); }
|
|
|
|
|
|
|
|
Model& model_()
|
|
|
|
{ return simulator_().model(); }
|
|
|
|
const Model& model_() const
|
|
|
|
{ return simulator_().model(); }
|
|
|
|
|
|
|
|
const GridView& gridView_() const
|
|
|
|
{ return problem_().gridView(); }
|
|
|
|
|
|
|
|
void initFirstIteration_()
|
|
|
|
{
|
|
|
|
// initialize the BCRS matrix for the Jacobian of the residual function
|
|
|
|
createMatrix_();
|
|
|
|
|
|
|
|
// initialize the Jacobian matrix and the vector for the residual function
|
|
|
|
residual_.resize(model_().numTotalDof());
|
|
|
|
resetSystem_();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Construct the BCRS matrix for the Jacobian of the residual function
|
|
|
|
void createMatrix_()
|
|
|
|
{
|
|
|
|
const auto& model = model_();
|
|
|
|
Stencil stencil(gridView_(), model_().dofMapper());
|
|
|
|
|
|
|
|
// for the main model, find out the global indices of the neighboring degrees of
|
|
|
|
// freedom of each primary degree of freedom
|
|
|
|
using NeighborSet = std::set< unsigned >;
|
|
|
|
std::vector<NeighborSet> sparsityPattern(model.numTotalDof());
|
|
|
|
|
|
|
|
ElementIterator elemIt = gridView_().template begin<0>();
|
|
|
|
const ElementIterator elemEndIt = gridView_().template end<0>();
|
|
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
|
|
const Element& elem = *elemIt;
|
|
|
|
stencil.update(elem);
|
|
|
|
|
|
|
|
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
|
|
|
|
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
|
|
|
|
|
|
|
|
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
|
|
|
|
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
|
|
|
|
sparsityPattern[myIdx].insert(neighborIdx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-06-29 09:32:19 -05:00
|
|
|
// Do not include auxiliary connections in the linearization sparsity pattern.
|
|
|
|
auto reservoirSparsityPattern = sparsityPattern;
|
|
|
|
|
2022-06-24 08:56:05 -05:00
|
|
|
// add the additional neighbors and degrees of freedom caused by the auxiliary
|
|
|
|
// equations
|
|
|
|
size_t numAuxMod = model.numAuxiliaryModules();
|
|
|
|
for (unsigned auxModIdx = 0; auxModIdx < numAuxMod; ++auxModIdx)
|
|
|
|
model.auxiliaryModule(auxModIdx)->addNeighbors(sparsityPattern);
|
|
|
|
|
|
|
|
// allocate raw matrix
|
|
|
|
jacobian_.reset(new SparseMatrixAdapter(simulator_()));
|
|
|
|
|
|
|
|
// create matrix structure based on sparsity pattern
|
|
|
|
jacobian_->reserve(sparsityPattern);
|
|
|
|
|
2022-06-29 09:32:19 -05:00
|
|
|
// Now generate the neighbours_ and trans_ structures for the linearization loop.
|
|
|
|
// Those should not include an entry for the cell itself.
|
2022-06-24 08:56:05 -05:00
|
|
|
for (unsigned globI = 0; globI < model.numTotalDof(); globI++) {
|
2022-06-29 09:32:19 -05:00
|
|
|
reservoirSparsityPattern[globI].erase(globI);
|
2022-06-24 08:56:05 -05:00
|
|
|
}
|
|
|
|
unsigned numCells = model.numTotalDof();
|
|
|
|
neighbours_.reserve(numCells, 6 * numCells);
|
|
|
|
trans_.reserve(numCells, 6 * numCells);
|
|
|
|
std::vector<double> loctrans;
|
|
|
|
for (unsigned globI = 0; globI < numCells; globI++) {
|
2022-06-29 09:32:19 -05:00
|
|
|
const auto& cells = reservoirSparsityPattern[globI];
|
2022-06-24 08:56:05 -05:00
|
|
|
neighbours_.appendRow(cells.begin(), cells.end());
|
|
|
|
unsigned n = cells.size();
|
|
|
|
loctrans.resize(n);
|
|
|
|
short loc = 0;
|
|
|
|
for (const int& cell : cells) {
|
|
|
|
loctrans[loc] = problem_().transmissibility(globI, cell);
|
|
|
|
loc++;
|
|
|
|
}
|
|
|
|
trans_.appendRow(loctrans.begin(), loctrans.end());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// reset the global linear system of equations.
|
|
|
|
void resetSystem_()
|
|
|
|
{
|
|
|
|
residual_ = 0.0;
|
|
|
|
// zero all matrix entries
|
|
|
|
jacobian_->clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
void setResAndJacobi(VectorBlock& res, MatrixBlock& bMat, const ADVectorBlock& resid) const
|
|
|
|
{
|
|
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
|
|
|
|
res[eqIdx] = resid[eqIdx].value();
|
|
|
|
|
|
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
|
|
|
|
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
|
|
|
|
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
|
|
|
|
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
|
|
|
|
// with regard to the focus variable 'pvIdx' of the degree of freedom
|
|
|
|
// 'focusDofIdx'
|
|
|
|
bMat[eqIdx][pvIdx] = resid[eqIdx].derivative(pvIdx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
2022-06-29 09:32:19 -05:00
|
|
|
void linearize_()
|
2022-06-24 08:56:05 -05:00
|
|
|
{
|
|
|
|
const bool well_local = false;
|
|
|
|
resetSystem_();
|
|
|
|
unsigned numCells = model_().numTotalDof();
|
|
|
|
#ifdef _OPENMP
|
|
|
|
#pragma omp parallel for
|
|
|
|
#endif
|
|
|
|
for (unsigned globI = 0; globI < numCells; globI++) {
|
|
|
|
const auto& neighbours = neighbours_[globI]; // this is a set but should maybe be changed
|
|
|
|
// accumulation term
|
|
|
|
double dt = simulator_().timeStepSize();
|
|
|
|
double volume = model_().dofTotalVolume(globI);
|
|
|
|
Scalar storefac = volume / dt;
|
|
|
|
ADVectorBlock adres(0.0);
|
|
|
|
const IntensiveQuantities* intQuantsInP = model_().cachedIntensiveQuantities(globI, /*timeIdx*/ 0);
|
|
|
|
assert(intQuantsInP);
|
|
|
|
const IntensiveQuantities& intQuantsIn = *intQuantsInP;
|
|
|
|
// intensiveQuantity(globI, 0);
|
|
|
|
LocalResidual::computeStorage(adres, intQuantsIn, 0);
|
|
|
|
adres *= storefac;
|
|
|
|
VectorBlock res(0.0);
|
|
|
|
MatrixBlock bMat(0.0);
|
|
|
|
setResAndJacobi(res, bMat, adres);
|
2022-06-29 09:32:19 -05:00
|
|
|
// TODO: check recycleFirst etc.
|
2022-06-24 08:56:05 -05:00
|
|
|
// first we use it as storage cache
|
|
|
|
if (model_().newtonMethod().numIterations() == 0) {
|
|
|
|
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
|
|
|
|
}
|
|
|
|
residual_[globI] -= model_().cachedStorage(globI, 1); //*storefac;
|
|
|
|
residual_[globI] += res;
|
|
|
|
jacobian_->addToBlock(globI, globI, bMat);
|
|
|
|
// wells sources for now (should be moved out)
|
|
|
|
if (well_local) {
|
|
|
|
res = 0.0;
|
|
|
|
bMat = 0.0;
|
|
|
|
adres = 0.0;
|
|
|
|
LocalResidual::computeSource(adres, problem_(), globI, 0);
|
|
|
|
adres *= -volume;
|
|
|
|
setResAndJacobi(res, bMat, adres);
|
|
|
|
residual_[globI] += res;
|
|
|
|
jacobian_->addToBlock(globI, globI, bMat);
|
|
|
|
}
|
|
|
|
short loc = 0;
|
|
|
|
for (const auto& globJ : neighbours) {
|
|
|
|
assert(globJ != globI);
|
|
|
|
res = 0.0;
|
|
|
|
bMat = 0.0;
|
|
|
|
adres = 0.0;
|
|
|
|
const IntensiveQuantities* intQuantsExP = model_().cachedIntensiveQuantities(globJ, /*timeIdx*/ 0);
|
|
|
|
assert(intQuantsExP);
|
|
|
|
const IntensiveQuantities& intQuantsEx = *intQuantsExP;
|
|
|
|
LocalResidual::computeFlux(
|
2022-07-06 16:32:20 -05:00
|
|
|
adres, problem_(), globI, globJ, intQuantsIn, intQuantsEx, 0);
|
2022-06-24 08:56:05 -05:00
|
|
|
adres *= trans_[globI][loc];
|
|
|
|
setResAndJacobi(res, bMat, adres);
|
|
|
|
residual_[globI] += res;
|
|
|
|
jacobian_->addToBlock(globI, globI, bMat);
|
|
|
|
bMat *= -1.0;
|
|
|
|
jacobian_->addToBlock(globJ, globI, bMat);
|
|
|
|
loc++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (not(well_local)) {
|
|
|
|
problem_().wellModel().addReseroirSourceTerms(residual_, *jacobian_);
|
|
|
|
}
|
|
|
|
// before the first iteration of each time step, we need to update the
|
|
|
|
// constraints. (i.e., we assume that constraints can be time dependent, but they
|
|
|
|
// can't depend on the solution.)
|
|
|
|
}
|
|
|
|
|
|
|
|
Simulator *simulatorPtr_;
|
|
|
|
|
|
|
|
// the jacobian matrix
|
|
|
|
std::unique_ptr<SparseMatrixAdapter> jacobian_;
|
|
|
|
|
|
|
|
// the right-hand side
|
|
|
|
GlobalEqVector residual_;
|
|
|
|
|
|
|
|
LinearizationType linearizationType_;
|
|
|
|
|
|
|
|
SparseTable<unsigned> neighbours_;
|
|
|
|
SparseTable<double> trans_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
|
|
#endif // TPFA_LINEARIZER
|