opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoilEbos.hpp

385 lines
16 KiB
C++
Raw Normal View History

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Andreas Lauser
2017-11-21 04:12:16 -06:00
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#include <opm/autodiff/BlackoilOutputEbos.hpp>
#include <opm/autodiff/IterationReport.hpp>
#include <opm/autodiff/NonlinearSolver.hpp>
#include <opm/autodiff/BlackoilModelEbos.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/moduleVersion.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
2018-02-09 06:42:16 -06:00
#include <opm/grid/utility/StopWatch.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/unused.hh>
namespace Opm {
/// a simulator for the blackoil model
template<class TypeTag>
class SimulatorFullyImplicitBlackoilEbos
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
2017-08-08 01:10:55 -05:00
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilState ReservoirState;
typedef BlackoilOutputEbos<TypeTag> OutputWriter;
typedef BlackoilModelEbos<TypeTag> Model;
typedef BlackoilModelParameters ModelParameters;
typedef NonlinearSolver<Model> Solver;
typedef BlackoilWellModel<TypeTag> WellModel;
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] props fluid and rock properties
/// \param[in] linsolver linear solver
/// \param[in] has_disgas true for dissolved gas option
/// \param[in] has_vapoil true for vaporized oil option
/// \param[in] eclipse_state the object which represents an internalized ECL deck
/// \param[in] output_writer
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator,
const ParameterGroup& param,
NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
OutputWriter& output_writer)
: ebosSimulator_(ebosSimulator),
param_(param),
model_param_(param),
solver_param_(param),
solver_(linsolver),
phaseUsage_(phaseUsageFromDeck(eclState())),
has_disgas_(has_disgas),
has_vapoil_(has_vapoil),
terminal_output_(param.getDefault("output_terminal", true)),
output_writer_(output_writer),
is_parallel_run_( false )
{
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
// Only rank 0 does print to std::cout
terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 );
is_parallel_run_ = ( info.communicator().size() > 1 );
}
#endif
}
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \return simulation report, with timing data
2017-12-04 03:35:13 -06:00
SimulatorReport run(SimulatorTimer& timer)
{
2017-12-04 03:35:13 -06:00
ReservoirState dummy_state(0,0,0);
WellState prev_well_state;
ExtraData extra;
failureReport_ = SimulatorReport();
if (output_writer_.isRestart()) {
// This is a restart, populate WellState
2017-12-04 03:35:13 -06:00
ReservoirState stateInit(Opm::UgGridHelpers::numCells(grid()),
Opm::UgGridHelpers::numFaces(grid()),
phaseUsage_.num_phases);
output_writer_.initFromRestartFile(phaseUsage_, grid(), stateInit, prev_well_state, extra);
}
// Create timers and file for writing timing info.
Opm::time::StopWatch solver_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
// adaptive time stepping
2017-10-29 15:06:19 -05:00
const auto& events = schedule().getEvents();
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
const bool useTUNING = param_.getDefault("use_TUNING", false);
if( param_.getDefault("timestep.adaptive", true ) )
{
if (useTUNING) {
2017-10-29 15:06:19 -05:00
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( schedule().getTuning(), timer.currentStepNum(), param_, terminal_output_ ) );
} else {
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
}
if (output_writer_.isRestart()) {
if (extra.suggested_step > 0.0) {
adaptiveTimeStepping->setSuggestedNextStep(extra.suggested_step);
}
}
}
SimulatorReport report;
SimulatorReport stepReport;
WellModel well_model(ebosSimulator_, model_param_, terminal_output_);
if (output_writer_.isRestart()) {
well_model.setRestartWellState(prev_well_state); // Neccessary for perfect restarts
}
WellState wellStateDummy; //not used. Only passed to make the old interfaces happy
if ( model_param_.matrix_add_well_contributions_ ||
model_param_.preconditioner_add_well_contributions_ )
{
ebosSimulator_.model().clearAuxiliaryModules();
auto auxMod = std::make_shared<WellConnectionAuxiliaryModule<TypeTag> >(schedule(), grid());
ebosSimulator_.model().addAuxiliaryModule(auxMod);
}
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
if ( terminal_output_ )
{
std::ostringstream ss;
timer.report(ss);
OpmLog::debug(ss.str());
}
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
well_model.beginReportStep(timer.currentStepNum());
auto solver = createSolver(well_model);
// write the inital state at the report stage
if (timer.initialStep()) {
Dune::Timer perfTimer;
perfTimer.start();
// No per cell data is written for initial step, but will be
// for subsequent steps, when we have started simulating
2017-12-04 03:35:13 -06:00
output_writer_.writeTimeStep( timer, dummy_state, well_model.wellState(), solver->model() );
report.output_write_time += perfTimer.stop();
}
if( terminal_output_ )
{
std::ostringstream step_msg;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
step_msg.imbue(std::locale(std::locale::classic(), facet));
2017-11-16 08:42:01 -06:00
step_msg << "\nReport step " << std::setw(2) <<timer.currentStepNum()
<< "/" << timer.numSteps()
<< " at day " << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day)
<< "/" << (double)unit::convert::to(timer.totalTime(), unit::day)
<< ", date = " << timer.currentDateTime();
OpmLog::info(step_msg.str());
}
2016-08-08 07:58:25 -05:00
solver->model().beginReportStep();
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are too large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if( adaptiveTimeStepping ) {
if (useTUNING) {
if(events.hasEvent(ScheduleEvents::TUNING_CHANGE,timer.currentStepNum())) {
adaptiveTimeStepping->updateTUNING(schedule().getTuning(), timer.currentStepNum());
}
2017-11-21 04:12:16 -06:00
}
bool event = events.hasEvent(ScheduleEvents::NEW_WELL, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::INJECTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE, timer.currentStepNum());
2018-01-15 06:51:40 -06:00
stepReport = adaptiveTimeStepping->step( timer, *solver, dummy_state, wellStateDummy, event, output_writer_, nullptr );
report += stepReport;
failureReport_ += adaptiveTimeStepping->failureReport();
}
else {
// solve for complete report step
2017-12-04 03:35:13 -06:00
stepReport = solver->step(timer, dummy_state, wellStateDummy);
report += stepReport;
failureReport_ += solver->failureReport();
if( terminal_output_ )
{
std::ostringstream ss;
stepReport.reportStep(ss);
OpmLog::info(ss.str());
}
}
2016-08-08 07:58:25 -05:00
solver->model().endReportStep();
well_model.endReportStep();
2016-08-08 07:58:25 -05:00
// take time that was used to solve system for this reportStep
solver_timer.stop();
// update timing.
report.solver_time += solver_timer.secsSinceStart();
// Increment timer, remember well state.
++timer;
2016-12-22 06:45:31 -06:00
if (terminal_output_ )
2016-11-08 01:46:42 -06:00
{
2018-01-12 08:32:04 -06:00
if (!timer.initialStep()) {
const std::string version = moduleVersionName();
outputTimestampFIP(timer, version);
}
}
// write simulation state at the report stage
Dune::Timer perfTimer;
perfTimer.start();
const double nextstep = adaptiveTimeStepping ? adaptiveTimeStepping->suggestedNextStep() : -1.0;
2017-12-04 03:35:13 -06:00
output_writer_.writeTimeStep( timer, dummy_state, well_model.wellState(), solver->model(), false, nextstep, report);
report.output_write_time += perfTimer.stop();
2018-01-12 08:32:04 -06:00
if (terminal_output_ )
{
std::string msg =
"Time step took " + std::to_string(solver_timer.secsSinceStart()) + " seconds; "
"total solver time " + std::to_string(report.solver_time) + " seconds.";
OpmLog::debug(msg);
}
}
// Stop timer and create timing report
total_timer.stop();
report.total_time = total_timer.secsSinceStart();
report.converged = true;
return report;
}
/** \brief Returns the simulator report for the failed substeps of the simulation.
*/
const SimulatorReport& failureReport() const { return failureReport_; };
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
protected:
std::unique_ptr<Solver> createSolver(WellModel& well_model)
{
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
model_param_,
well_model,
solver_,
terminal_output_));
return std::unique_ptr<Solver>(new Solver(solver_param_, std::move(model)));
}
2017-11-15 08:55:58 -06:00
void outputTimestampFIP(const SimulatorTimer& timer, const std::string version)
2017-10-12 08:36:54 -05:00
{
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d %b %Y");
ss.imbue(std::locale(std::locale::classic(), facet));
ss << "\n **************************************************************************\n"
<< " Balance at" << std::setw(10) << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day) << " Days"
<< " *" << std::setw(30) << eclState().getTitle() << " *\n"
<< " Report " << std::setw(4) << timer.reportStepNum() << " " << timer.currentDateTime()
<< " * Flow version " << std::setw(11) << version << " *\n"
<< " **************************************************************************\n";
OpmLog::note(ss.str());
}
2016-11-08 01:46:42 -06:00
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
2017-10-29 15:06:19 -05:00
const Schedule& schedule() const
{ return ebosSimulator_.vanguard().schedule(); }
2017-10-29 15:06:19 -05:00
// Data.
Simulator& ebosSimulator_;
typedef typename Solver::SolverParameters SolverParameters;
SimulatorReport failureReport_;
const ParameterGroup param_;
ModelParameters model_param_;
SolverParameters solver_param_;
// Observed objects.
NewtonIterationBlackoilInterface& solver_;
PhaseUsage phaseUsage_;
// Misc. data
const bool has_disgas_;
const bool has_vapoil_;
bool terminal_output_;
// output_writer
OutputWriter& output_writer_;
// Whether this a parallel simulation or not
bool is_parallel_run_;
};
} // namespace Opm
#endif // OPM_SIMULATORFULLYIMPLICITBLACKOIL_HEADER_INCLUDED