opm-simulators/opm/simulators/aquifers/AquiferInterface.hpp

269 lines
9.5 KiB
C++
Raw Normal View History

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#define OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifetp.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <algorithm>
#include <unordered_map>
#include <vector>
namespace Opm
{
template <typename TypeTag>
class AquiferInterface
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { enableBrine = GET_PROP_VALUE(TypeTag, EnableBrine) };
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval,
FluidSystem,
enableTemperature,
enableEnergy,
BlackoilIndices::gasEnabled,
enableBrine,
BlackoilIndices::numPhases>
FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
// Constructor
AquiferInterface(int aqID,
const std::vector<Aquancon::AquancCell>& connections,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator)
: aquiferID(aqID)
, connections_(connections)
, ebos_simulator_(ebosSimulator)
, cartesian_to_compressed_(cartesian_to_compressed)
{
}
// Deconstructor
virtual ~AquiferInterface()
{
}
void initFromRestart(const std::vector<data::AquiferData>& aquiferSoln)
{
auto xaqPos
= std::find_if(aquiferSoln.begin(), aquiferSoln.end(), [this](const data::AquiferData& xaq) -> bool {
return xaq.aquiferID == this->aquiferID;
});
if (xaqPos == aquiferSoln.end())
return;
this->assignRestartData(*xaqPos);
this->W_flux_ = xaqPos->volume;
this->pa0_ = xaqPos->initPressure;
this->solution_set_from_restart_ = true;
}
void initialSolutionApplied()
{
2020-02-09 00:43:43 -06:00
initQuantities();
}
void beginTimeStep()
{
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin<0>();
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
int cellIdx = elemCtx.globalSpaceIndex(0, 0);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
}
}
template <class Context>
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
{
unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const
// pointer to IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
// This is the pressure at td + dt
updateCellPressure(pressure_current_, idx, intQuants);
updateCellDensity(idx, intQuants);
calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx]
+= Qai_[idx] / context.dofVolume(spaceIdx, timeIdx);
}
std::size_t size() const {
return this->connections_.size();
}
protected:
inline Scalar gravity_() const
{
return ebos_simulator_.problem().gravity()[2];
}
2020-02-09 00:43:43 -06:00
inline void initQuantities()
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
if (!this->solution_set_from_restart_) {
W_flux_ = 0.;
}
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections
// function
2020-02-09 00:43:43 -06:00
initializeConnections();
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(this->connections_.size(), 0.);
pressure_current_.resize(this->connections_.size(), 0.);
Qai_.resize(this->connections_.size(), 0.0);
}
inline void
updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void
updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
template <class faceCellType, class ugridType>
inline double getFaceArea(const faceCellType& faceCells,
const ugridType& ugrid,
const int faceIdx,
2020-02-09 00:43:43 -06:00
const int idx) const
{
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
// Do not make the connection if the product of the two cellIdx > 0. This is because the
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell
// adjoining)
double faceArea = 0.;
const auto cellNeighbour0 = faceCells(faceIdx, 0);
const auto cellNeighbour1 = faceCells(faceIdx, 1);
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
const auto calculatedFaceArea
= (!this->connections_[idx].influx_coeff.first) ? defaultFaceArea : this->connections_[idx].influx_coeff.second;
faceArea = (cellNeighbour0 * cellNeighbour1 > 0) ? 0. : calculatedFaceArea;
if (cellNeighbour1 == 0) {
faceArea = (cellNeighbour0 < 0) ? faceArea : 0.;
} else if (cellNeighbour0 == 0) {
faceArea = (cellNeighbour1 < 0) ? faceArea : 0.;
}
return faceArea;
}
virtual void endTimeStep() = 0;
const int aquiferID;
const std::vector<Aquancon::AquancCell> connections_;
const Simulator& ebos_simulator_;
const std::unordered_map<int, int> cartesian_to_compressed_;
// Grid variables
std::vector<Scalar> faceArea_connected_;
std::vector<int> cellToConnectionIdx_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
Scalar Tc_; // Time constant
Scalar pa0_; // initial aquifer pressure
Eval W_flux_;
bool solution_set_from_restart_ {false};
2020-02-09 00:43:43 -06:00
virtual void initializeConnections() = 0;
virtual void assignRestartData(const data::AquiferData& xaq) = 0;
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
virtual void calculateAquiferCondition() = 0;
virtual void calculateAquiferConstants() = 0;
virtual Scalar calculateReservoirEquilibrium() = 0;
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
};
} // namespace Opm
#endif