opm-simulators/tests/problems/eclproblem.hh

945 lines
36 KiB
C++
Raw Normal View History

/*
Copyright (C) 2014 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::EclProblem
*/
#ifndef EWOMS_ECL_PROBLEM_HH
#define EWOMS_ECL_PROBLEM_HH
#include "eclgridmanager.hh"
#include <ewoms/models/blackoil/blackoilmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <ewoms/wells/eclwellmanager.hh>
#include <opm/material/fluidmatrixinteractions/PiecewiseLinearTwoPhaseMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EclDefaultMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/core/utility/Average.hpp>
// for this simulator to make sense, dune-cornerpoint and opm-parser
// must be available
#include <dune/grid/CpGrid.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Utility/SgofTable.hpp>
#include <opm/parser/eclipse/Utility/SwofTable.hpp>
#include <opm/parser/eclipse/Utility/PvtoTable.hpp>
#include <opm/parser/eclipse/Utility/PvtwTable.hpp>
#include <opm/parser/eclipse/Utility/PvdgTable.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <boost/date_time.hpp>
#include <vector>
#include <string>
namespace Ewoms {
template <class TypeTag>
class EclProblem;
}
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclGridManager));
// The temperature inside the reservoir
NEW_PROP_TAG(Temperature);
// Write all solutions for visualization, not just the ones for the
// report steps...
NEW_PROP_TAG(EnableWriteAllSolutions);
// Set the problem property
SET_TYPE_PROP(EclBaseProblem, Problem, Ewoms::EclProblem<TypeTag>);
// Select the element centered finite volume method as spatial discretization
SET_TAG_PROP(EclBaseProblem, SpatialDiscretizationSplice, EcfvDiscretization);
// Set the material Law
SET_PROP(EclBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx> OilWaterTraits;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx> GasOilTraits;
typedef Opm::ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
typedef typename Opm::PiecewiseLinearTwoPhaseMaterial<OilWaterTraits> OilWaterLaw;
typedef typename Opm::PiecewiseLinearTwoPhaseMaterial<GasOilTraits> GasOilLaw;
public:
typedef Opm::EclDefaultMaterial<Traits, GasOilLaw, OilWaterLaw> type;
};
// Enable gravity
SET_BOOL_PROP(EclBaseProblem, EnableGravity, true);
// Reuse the last linearization if possible?
SET_BOOL_PROP(EclBaseProblem, EnableLinearizationRecycling, true);
// Re-assemble the linearization only for the cells which have changed?
SET_BOOL_PROP(EclBaseProblem, EnablePartialRelinearization, true);
// only write the solutions for the report steps to disk
SET_BOOL_PROP(EclBaseProblem, EnableWriteAllSolutions, false);
// set the defaults for some problem specific properties
SET_SCALAR_PROP(EclBaseProblem, Temperature, 293.15);
// The default for the end time of the simulation [s]
//
// By default, stop it after the universe will probably have stopped
// to exist. (the ECL problem will finish the simulation explicitly
// after it simulated the last episode specified in the deck.)
SET_SCALAR_PROP(EclBaseProblem, EndTime, 1e100);
// The default for the initial time step size of the simulation [s].
//
// The chosen value means that the size of the first time step is the
// one of the initial episode (if the length of the initial episode is
// not millions of trillions of years, that is...)
SET_SCALAR_PROP(EclBaseProblem, InitialTimeStepSize, 1e100);
// Disable the VTK output by default for this problem ...
SET_BOOL_PROP(EclBaseProblem, EnableVtkOutput, false);
// ... but enable the Eclipse output by default
SET_BOOL_PROP(EclBaseProblem, EnableEclipseOutput, true);
// The default DGF file to load
SET_STRING_PROP(EclBaseProblem, GridFile, "data/ecl.DATA");
}} // namespace Properties, Opm
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief This problem uses a deck in the format of the Eclipse
* simulator.
*/
template <class TypeTag>
class EclProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, BlackOilFluidState) BlackOilFluidState;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, GridManager) GridManager;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
public:
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
"The temperature [K] in the reservoir");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the "
"report steps");
}
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
EclProblem(Simulator &simulator)
: ParentType(simulator)
, wellManager_(simulator)
{}
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
// invert the direction of the gravity vector for ECL problems
// (z coodinates represent depth, not height.)
this->gravity_[dim - 1] *= -1;
initFluidSystem_();
readMaterialParameters_();
readInitialCondition_();
wellManager_.init(simulator.gridManager().eclipseState());
// Start the first episode. For this, ask the Eclipse schedule.
Opm::TimeMapConstPtr timeMap = simulator.gridManager().schedule()->getTimeMap();
tm curTime = boost::posix_time::to_tm(timeMap->getStartTime(/*timeStepIdx=*/0));
Scalar startTime = std::mktime(&curTime);
simulator.setStartTime(startTime);
simulator.startNextEpisode(/*startTime=*/startTime,
/*length=*/timeMap->getTimeStepLength(/*timeStepIdx=*/0));
// we want the episode index to be the same as the report step
// index to make things simpler...
simulator.setEpisodeIndex(0);
// the user-specified initial time step can be shorter than
// the initial report step size given in the deck, but it
// can't be longer.
Scalar dt = simulator.timeStepSize();
if (dt > simulator.episodeLength())
simulator.setTimeStepSize(simulator.episodeLength());
}
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode()
{ wellManager_.beginEpisode(this->simulator().gridManager().eclipseState()); }
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{ wellManager_.beginTimeStep(); }
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{ wellManager_.beginIteration(); }
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{ wellManager_.endIteration(); }
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
wellManager_.endTimeStep();
#ifndef NDEBUG
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
#endif // NDEBUG
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode()
{
Simulator &simulator = this->simulator();
Opm::EclipseStateConstPtr eclipseState = this->simulator().gridManager().eclipseState();
Opm::TimeMapConstPtr timeMap = eclipseState->getSchedule()->getTimeMap();
// TimeMap deals with points in time, so the number of time
// intervals (i.e., report steps) is one less!
int numReportSteps = timeMap->size() - 1;
// start the next episode if there are additional report
// steps, else finish the simulation
int nextEpisodeIdx = simulator.episodeIndex() + 1;
if (nextEpisodeIdx < numReportSteps) {
simulator.startNextEpisode(timeMap->getTimeStepLength(nextEpisodeIdx));
simulator.setTimeStepSize(timeMap->getTimeStepLength(nextEpisodeIdx));
}
else
simulator.setFinished(true);
}
/*!
* \brief Returns true if the current solution should be written
* to disk for visualization.
*
* For the ECL simulator we only write at the end of
* episodes/report steps...
*/
bool shouldWriteOutput()
{
if (this->simulator().timeStepIndex() < 0)
// always write the initial solution
return true;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions))
return true;
return this->simulator().episodeWillBeOver();
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context,
int spaceIdx,
int timeIdx) const
{
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return intrinsicPermeability_[globalSpaceIdx];
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intersectionIntrinsicPermeability
*/
template <class Context>
void intersectionIntrinsicPermeability(DimMatrix &result,
const Context &context,
int localIntersectionIdx, int timeIdx) const
{
// calculate the intersection index
const auto &scvf = context.stencil(timeIdx).interiorFace(localIntersectionIdx);
int numElements = this->model().numDof();
size_t interiorElemIdx = context.globalSpaceIndex(scvf.interiorIndex(), timeIdx);
size_t exteriorElemIdx = context.globalSpaceIndex(scvf.exteriorIndex(), timeIdx);
size_t elem1Idx = std::min(interiorElemIdx, exteriorElemIdx);
size_t elem2Idx = std::max(interiorElemIdx, exteriorElemIdx);
size_t globalIntersectionIdx = elem1Idx*numElements + elem2Idx;
result = intersectionIntrinsicPermeability_.at(globalIntersectionIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return porosity_[globalSpaceIdx];
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context,
int spaceIdx, int timeIdx) const
{
int tableIdx = 0;
if (materialParamTableIdx_.size() > 0) {
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
tableIdx = materialParamTableIdx_[globalSpaceIdx];
}
return materialParams_[tableIdx];
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return this->simulator().gridManager().caseName(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*
* The black-oil model assumes constant temperature to define its
* parameters. Although temperature is thus not really used by the
* model, it gets written to the VTK output. Who nows, maybe we
* will need it one day?
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return temperature_; }
// \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* Eclipse uses no-flow conditions for all boundaries. \todo really?
*/
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context,
int spaceIdx,
int timeIdx) const
{ values.setNoFlow(); }
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
{
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.assignNaive(initialFluidStates_[globalDofIdx]);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate,
const Context &context,
int spaceIdx,
int timeIdx) const
{
rate = 0;
wellManager_.computeTotalRatesForDof(rate, context, spaceIdx, timeIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
rate /= this->model().dofTotalVolume(globalDofIdx);
}
//! \}
private:
void readMaterialParameters_()
{
auto deck = this->simulator().gridManager().deck();
auto eclipseState = this->simulator().gridManager().eclipseState();
const auto &grid = this->simulator().gridManager().grid();
size_t numDof = this->model().numDof();
intrinsicPermeability_.resize(numDof);
porosity_.resize(numDof);
materialParams_.resize(numDof);
////////////////////////////////
// permeability
// read the intrinsic permeabilities from the eclipseState. Note that all arrays
// provided by eclipseState are one-per-cell of "uncompressed" grid, whereas the
// dune-cornerpoint grid object might remove a few elements...
if (eclipseState->hasDoubleGridProperty("PERMX")) {
const std::vector<double> &permxData =
eclipseState->getDoubleGridProperty("PERMX")->getData();
std::vector<double> permyData(permxData);
if (eclipseState->hasDoubleGridProperty("PERMY"))
permyData = eclipseState->getDoubleGridProperty("PERMY")->getData();
std::vector<double> permzData(permxData);
if (eclipseState->hasDoubleGridProperty("PERMZ"))
permzData = eclipseState->getDoubleGridProperty("PERMZ")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = grid.globalCell()[dofIdx];
intrinsicPermeability_[dofIdx] = 0.0;
intrinsicPermeability_[dofIdx][0][0] = permxData[cartesianElemIdx];
intrinsicPermeability_[dofIdx][1][1] = permyData[cartesianElemIdx];
intrinsicPermeability_[dofIdx][2][2] = permzData[cartesianElemIdx];
}
// for now we don't care about non-diagonal entries
}
else
OPM_THROW(std::logic_error,
"Can't read the intrinsic permeability from the eclipse state. "
"(The PERM{X,Y,Z} keywords are missing)");
// apply the NTG keyword to the X and Y permeabilities
if (eclipseState->hasDoubleGridProperty("NTG")) {
const std::vector<double> &ntgData =
eclipseState->getDoubleGridProperty("NTG")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = grid.globalCell()[dofIdx];
intrinsicPermeability_[dofIdx][0][0] *= ntgData[cartesianElemIdx];
intrinsicPermeability_[dofIdx][1][1] *= ntgData[cartesianElemIdx];
}
}
computeFaceIntrinsicPermeabilities_();
////////////////////////////////
////////////////////////////////
// compute the porosity
if (eclipseState->hasDoubleGridProperty("PORO")) {
const std::vector<double> &poroData =
eclipseState->getDoubleGridProperty("PORO")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = grid.globalCell()[dofIdx];
porosity_[dofIdx] = poroData[cartesianElemIdx];
}
}
else
OPM_THROW(std::logic_error,
"Can't read the porosity from the eclipse state. "
"(The PORO keyword is missing)");
// apply the NTG keyword to the porosity
if (eclipseState->hasDoubleGridProperty("NTG")) {
const std::vector<double> &ntgData =
eclipseState->getDoubleGridProperty("NTG")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = grid.globalCell()[dofIdx];
porosity_[dofIdx] *= ntgData[cartesianElemIdx];
}
}
// apply the MULTPV keyword to the porosity
if (eclipseState->hasDoubleGridProperty("MULTPV")) {
const std::vector<double> &multpvData =
eclipseState->getDoubleGridProperty("MULTPV")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = grid.globalCell()[dofIdx];
porosity_[dofIdx] *= multpvData[cartesianElemIdx];
}
}
////////////////////////////////
// fluid parameters
Opm::DeckKeywordConstPtr swofKeyword = deck->getKeyword("SWOF");
Opm::DeckKeywordConstPtr sgofKeyword = deck->getKeyword("SGOF");
// the number of tables for the SWOF and the SGOF keywords
// must be identical
assert(Opm::SwofTable::numTables(swofKeyword) == Opm::SgofTable::numTables(sgofKeyword));
typedef typename MaterialLawParams::GasOilParams GasOilParams;
typedef typename MaterialLawParams::OilWaterParams OilWaterParams;
size_t numSatfuncTables = Opm::SwofTable::numTables(swofKeyword);
materialParams_.resize(numSatfuncTables);
for (size_t tableIdx = 0; tableIdx < numSatfuncTables; ++ tableIdx) {
// set the parameters of the material law for a given table
OilWaterParams owParams;
GasOilParams goParams;
Opm::SwofTable swofTable(swofKeyword, tableIdx);
Opm::SgofTable sgofTable(sgofKeyword, tableIdx);
owParams.setSwSamples(swofTable.getSwColumn());
owParams.setKrwSamples(swofTable.getKrwColumn());
owParams.setKrnSamples(swofTable.getKrowColumn());
owParams.setPcnwSamples(swofTable.getPcowColumn());
// convert the saturations from gas to oil saturations
auto SoSamples = sgofTable.getSgColumn();
for (size_t sampleIdx = 0; sampleIdx < SoSamples.size(); ++ sampleIdx) {
SoSamples[sampleIdx] = 1 - SoSamples[sampleIdx];
}
goParams.setSwSamples(SoSamples);
goParams.setKrwSamples(sgofTable.getKrogColumn());
goParams.setKrnSamples(sgofTable.getKrgColumn());
goParams.setPcnwSamples(sgofTable.getPcogColumn());
owParams.finalize();
goParams.finalize();
materialParams_[tableIdx].setOilWaterParams(owParams);
materialParams_[tableIdx].setGasOilParams(goParams);
materialParams_[tableIdx].finalize();
}
// set the index of the table to be used
if (eclipseState->hasIntGridProperty("SATNUM")) {
const std::vector<int> &satnumData =
eclipseState->getIntGridProperty("SATNUM")->getData();
materialParamTableIdx_.resize(numDof);
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = grid.globalCell()[dofIdx];
// make sure that all values are in the correct range
assert(1 <= satnumData[dofIdx]);
assert(satnumData[dofIdx] <= static_cast<int>(numSatfuncTables));
// Eclipse uses Fortran-style indices which start at
// 1, but this here is C++...
materialParamTableIdx_[dofIdx] = satnumData[cartesianElemIdx] - 1;
}
}
else
materialParamTableIdx_.clear();
////////////////////////////////
}
void initFluidSystem_()
{
const auto deck = this->simulator().gridManager().deck();
FluidSystem::initBegin();
// set the reference densities
Opm::DeckRecordConstPtr densityRecord = deck->getKeyword("DENSITY")->getRecord(0);
FluidSystem::setSurfaceDensities(densityRecord->getItem("OIL")->getSIDouble(0),
densityRecord->getItem("WATER")->getSIDouble(0),
densityRecord->getItem("GAS")->getSIDouble(0));
// so far, we require the presence of the PVTO, PVTW and PVDG
// keywords...
Opm::PvtoTable pvtoTable(deck->getKeyword("PVTO"), /*tableIdx=*/0);
Opm::PvtwTable pvtwTable(deck->getKeyword("PVTW"));
Opm::PvdgTable pvdgTable(deck->getKeyword("PVDG"));
FluidSystem::setPvtoTable(pvtoTable);
FluidSystem::setPvtwTable(pvtwTable);
FluidSystem::setPvdgTable(pvdgTable);
FluidSystem::initEnd();
}
void readInitialCondition_()
{
const auto deck = this->simulator().gridManager().deck();
const auto &grid = this->simulator().gridManager().grid();
size_t numDof = this->model().numDof();
const auto &cartSize = grid.logicalCartesianSize();
size_t numCartesianCells = cartSize[0] * cartSize[1] * cartSize[2];
initialFluidStates_.resize(numDof);
if (!deck->hasKeyword("SWAT") ||
!deck->hasKeyword("SGAS"))
OPM_THROW(std::runtime_error,
"So far, the Eclipse input file requires the presence of the SWAT "
"and SGAS keywords");
if (!deck->hasKeyword("PRESSURE"))
OPM_THROW(std::runtime_error,
"So far, the Eclipse input file requires the presence of the PRESSURE "
"keyword");
if (!deck->hasKeyword("DISGAS"))
OPM_THROW(std::runtime_error,
"The deck must exhibit gas dissolved in the oil phase"
" (DISGAS keyword is missing)");
if (!deck->hasKeyword("RS"))
OPM_THROW(std::runtime_error,
"The Eclipse input file requires the presence of the RS keyword");
if (deck->hasKeyword("VAPOIL"))
OPM_THROW(std::runtime_error,
"The deck must _not_ exhibit vaporized oil"
" (The VAPOIL keyword is unsupported)");
if (deck->hasKeyword("RV"))
OPM_THROW(std::runtime_error,
"The Eclipse input file requires the RV keyword to be non-present");
const std::vector<double> &waterSaturationData =
deck->getKeyword("SWAT")->getSIDoubleData();
const std::vector<double> &gasSaturationData =
deck->getKeyword("SGAS")->getSIDoubleData();
const std::vector<double> &pressureData =
deck->getKeyword("PRESSURE")->getSIDoubleData();
const std::vector<double> &rsData =
deck->getKeyword("RS")->getSIDoubleData();
// make sure that the size of the data arrays is correct
assert(waterSaturationData.size() == numCartesianCells);
assert(gasSaturationData.size() == numCartesianCells);
assert(pressureData.size() == numCartesianCells);
assert(rsData.size() == numCartesianCells);
// calculate the initial fluid states
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
auto &dofFluidState = initialFluidStates_[dofIdx];
size_t cartesianDofIdx = grid.globalCell()[dofIdx];
assert(0 <= cartesianDofIdx);
assert(cartesianDofIdx <= numCartesianCells);
//////
// set temperatures
//////
dofFluidState.setTemperature(temperature_);
//////
// set saturations
//////
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[cartesianDofIdx]);
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[cartesianDofIdx]);
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1
- waterSaturationData[cartesianDofIdx]
- gasSaturationData[cartesianDofIdx]);
//////
// set pressures
//////
Scalar oilPressure = pressureData[cartesianDofIdx];
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
dofFluidState.setPressure(phaseIdx, oilPressure);
}
//////
// set compositions
//////
// reset all mole fractions to 0
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
dofFluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
// set compositions of the gas and water phases
dofFluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
dofFluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
// set the composition of the oil phase:
//
// first, retrieve the relevant black-oil parameters from
// the fluid system.
Scalar RsSat = FluidSystem::gasDissolutionFactor(oilPressure);
Scalar RsReal = rsData[cartesianDofIdx];
if (RsReal > RsSat) {
std::array<int, 3> ijk;
grid.getIJK(dofIdx, ijk);
std::cerr << "Warning: The specified amount gas (R_s = " << RsReal << ") is more"
<< " than the maximium\n"
<< " amount which can be dissolved in oil"
<< " (R_s,max=" << RsSat << ")"
<< " for cell (" << ijk[0] << ", " << ijk[1] << ", " << ijk[2] << ")."
<< " Ignoring.\n";
RsReal = RsSat;
}
// calculate composition of the real and the saturated oil phase in terms of
// mass fractions.
Scalar rhooRef = FluidSystem::surfaceDensity(oilPhaseIdx);
Scalar rhogRef = FluidSystem::surfaceDensity(gasPhaseIdx);
Scalar XoGReal = RsReal*rhogRef / (RsReal*rhogRef + rhooRef);
// convert mass to mole fractions
Scalar MG = FluidSystem::molarMass(gasCompIdx);
Scalar MO = FluidSystem::molarMass(oilCompIdx);
Scalar xoGReal = XoGReal * MO / ((MO - MG) * XoGReal + MG);
Scalar xoOReal = 1 - xoGReal;
// finally, set the oil-phase composition
dofFluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoGReal);
dofFluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, xoOReal);
}
}
void computeFaceIntrinsicPermeabilities_()
{
auto eclipseState = this->simulator().gridManager().eclipseState();
const auto &grid = this->simulator().gridManager().grid();
int numElements = this->gridView().size(/*codim=*/0);
std::vector<Scalar> multx(numElements, 1.0);
std::vector<Scalar> multy(numElements, 1.0);
std::vector<Scalar> multz(numElements, 1.0);
std::vector<Scalar> multxMinus(numElements, 1.0);
std::vector<Scalar> multyMinus(numElements, 1.0);
std::vector<Scalar> multzMinus(numElements, 1.0);
// retrieve the transmissibility multiplier keywords. Note that we use them as
// permeability multipliers...
if (eclipseState->hasDoubleGridProperty("MULTX"))
multx = eclipseState->getDoubleGridProperty("MULTX")->getData();
if (eclipseState->hasDoubleGridProperty("MULTX-"))
multxMinus = eclipseState->getDoubleGridProperty("MULTX-")->getData();
if (eclipseState->hasDoubleGridProperty("MULTY"))
multy = eclipseState->getDoubleGridProperty("MULTY")->getData();
if (eclipseState->hasDoubleGridProperty("MULTY-"))
multyMinus = eclipseState->getDoubleGridProperty("MULTY-")->getData();
if (eclipseState->hasDoubleGridProperty("MULTZ"))
multz = eclipseState->getDoubleGridProperty("MULTZ")->getData();
if (eclipseState->hasDoubleGridProperty("MULTZ-"))
multzMinus = eclipseState->getDoubleGridProperty("MULTZ-")->getData();
// resize the hash map to a appropriate size for a conforming 3D grid
float maxLoadFactor = intersectionIntrinsicPermeability_.max_load_factor();
intersectionIntrinsicPermeability_.reserve(numElements * 6 / maxLoadFactor * 1.05 );
auto elemIt = this->gridView().template begin</*codim=*/0>();
const auto& elemEndIt = this->gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
auto intersectIt = elemIt->ileafbegin();
const auto &intersectEndIt = elemIt->ileafend();
for (; intersectIt != intersectEndIt; ++intersectIt) {
if (!intersectIt->neighbor())
// skip boundary intersections...
continue;
// calculate the "intersection index"
size_t interiorElemIdx = this->elementMapper().map(intersectIt->inside());
size_t exteriorElemIdx = this->elementMapper().map(intersectIt->outside());
size_t elem1Idx = std::min(interiorElemIdx, exteriorElemIdx);
size_t elem2Idx = std::max(interiorElemIdx, exteriorElemIdx);
size_t intersectIdx = elem1Idx*numElements + elem2Idx;
// do nothing if this intersection was already seen "from the other side"
if (intersectionIntrinsicPermeability_.count(intersectIdx) > 0)
continue;
auto K1 = intrinsicPermeability_[interiorElemIdx];
auto K2 = intrinsicPermeability_[exteriorElemIdx];
int interiorElemCartIdx = grid.globalCell()[interiorElemIdx];
int exteriorElemCartIdx = grid.globalCell()[exteriorElemIdx];
// local index of the face of the interior element which contains the
// intersection
int insideFaceIdx = intersectIt->indexInInside();
// take the transmissibility multipliers into account (i.e., the
// MULT[XYZ]-? keywords)
if (insideFaceIdx == 1) { // right
K1 *= multx[interiorElemCartIdx];
K2 *= multxMinus[exteriorElemCartIdx];
}
else if (insideFaceIdx == 0) { // left
K1 *= multxMinus[interiorElemCartIdx];
K2 *= multx[exteriorElemCartIdx];
}
else if (insideFaceIdx == 3) { // back
K1 *= multy[interiorElemCartIdx];
K2 *= multyMinus[exteriorElemCartIdx];
}
else if (insideFaceIdx == 2) { // front
K1 *= multyMinus[interiorElemCartIdx];
K2 *= multy[exteriorElemCartIdx];
}
else if (insideFaceIdx == 5) { // top
K1 *= multz[interiorElemCartIdx];
K2 *= multzMinus[exteriorElemCartIdx];
}
else if (insideFaceIdx == 4) { // bottom
K1 *= multzMinus[interiorElemCartIdx];
K2 *= multz[exteriorElemCartIdx];
}
// element-wise harmonic average
auto &K = intersectionIntrinsicPermeability_[intersectIdx];
K = 0.0;
for (int i = 0; i < dimWorld; ++i)
for (int j = 0; j < dimWorld; ++j)
K[i][j] = Opm::utils::harmonicAverage(K1[i][j], K2[i][j]);
}
}
}
std::vector<Scalar> porosity_;
std::vector<DimMatrix> intrinsicPermeability_;
// the intrinsic permeabilities for interior faces. since grids may be
// non-conforming, and there does not seem to be a mapper for interfaces in DUNE,
// these transmissibilities are accessed via the (elementIndex1, elementIndex2) pairs
// of the interfaces where
//
// elementIndex1 = min(interiorElementIndex, exteriorElementIndex)
//
// and
//
// elementIndex2 = max(interiorElementIndex, exteriorElementIndex)
//
// To make this perform better, this is first mingled into a single index using
//
// intersectionIndex = elementIndex1*numElements + elementIndex2
//
// as the index for the hash map.
std::unordered_map<size_t, DimMatrix> intersectionIntrinsicPermeability_;
std::vector<unsigned short> materialParamTableIdx_;
std::vector<MaterialLawParams> materialParams_;
std::vector<BlackOilFluidState> initialFluidStates_;
Scalar temperature_;
EclWellManager<TypeTag> wellManager_;
};
} // namespace Ewoms
#endif