opm-simulators/opm/autodiff/AutoDiffMatrix.hpp

530 lines
13 KiB
C++
Raw Normal View History

/*
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AUTODIFFMATRIX_HEADER_INCLUDED
#define OPM_AUTODIFFMATRIX_HEADER_INCLUDED
#include <opm/core/utility/platform_dependent/disable_warnings.h>
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
#include <opm/autodiff/fastSparseProduct.hpp>
#include <vector>
namespace Opm
{
class AutoDiffMatrix
{
public:
AutoDiffMatrix()
: type_(Z),
rows_(0),
cols_(0)
{
}
AutoDiffMatrix(const int rows, const int cols)
: type_(Z),
rows_(rows),
cols_(cols)
{
}
enum CreationType { ZeroMatrix, IdentityMatrix };
AutoDiffMatrix(const CreationType t, const int rows)
: type_(t == ZeroMatrix ? Z : I),
rows_(rows),
cols_(rows)
{
}
explicit AutoDiffMatrix(const Eigen::DiagonalMatrix<double, Eigen::Dynamic>& d)
: type_(D),
rows_(d.rows()),
cols_(d.cols()),
d_(d.diagonal().array().data(), d.diagonal().array().data() + d.rows())
{
}
explicit AutoDiffMatrix(const Eigen::SparseMatrix<double>& s)
: type_(S),
rows_(s.rows()),
cols_(s.cols()),
s_(s)
{
}
AutoDiffMatrix(const AutoDiffMatrix& other) = default;
AutoDiffMatrix& operator=(const AutoDiffMatrix& other) = default;
AutoDiffMatrix(AutoDiffMatrix&& other)
{
swap(other);
}
AutoDiffMatrix& operator=(AutoDiffMatrix&& other)
{
swap(other);
return *this;
}
void swap(AutoDiffMatrix& other)
{
std::swap(type_, other.type_);
std::swap(rows_, other.rows_);
std::swap(cols_, other.cols_);
d_.swap(other.d_);
s_.swap(other.s_);
}
AutoDiffMatrix operator+(const AutoDiffMatrix& rhs) const
{
assert(rows_ == rhs.rows_);
assert(cols_ == rhs.cols_);
switch (type_) {
case Z:
return rhs;
case I:
switch (rhs.type_) {
case Z:
return *this;
case I:
return sumII(*this, rhs);
case D:
return rhs + (*this);
case S:
return rhs + (*this);
}
case D:
switch (rhs.type_) {
case Z:
return *this;
case I:
return sumDI(*this, rhs);
case D:
return sumDD(*this, rhs);
case S:
return rhs + (*this);
}
case S:
switch (rhs.type_) {
case Z:
return *this;
case I:
return sumSI(*this, rhs);
case D:
return sumSD(*this, rhs);
case S:
return sumSS(*this, rhs);
}
}
}
AutoDiffMatrix operator*(const AutoDiffMatrix& rhs) const
{
assert(cols_ == rhs.rows_);
switch (type_) {
case Z:
return AutoDiffMatrix(rows_, rhs.cols_);
case I:
switch (rhs.type_) {
case Z:
return rhs;
case I:
return rhs;
case D:
return rhs;
case S:
return rhs;
}
case D:
switch (rhs.type_) {
case Z:
return AutoDiffMatrix(rows_, rhs.cols_);
case I:
return *this;
case D:
return prodDD(*this, rhs);
case S:
return prodDS(*this, rhs);
}
case S:
switch (rhs.type_) {
case Z:
return AutoDiffMatrix(rows_, rhs.cols_);
case I:
return *this;
case D:
return prodSD(*this, rhs);
case S:
return prodSS(*this, rhs);
}
}
}
AutoDiffMatrix& operator+=(const AutoDiffMatrix& rhs)
{
*this = *this + rhs;
return *this;
}
AutoDiffMatrix& operator-=(const AutoDiffMatrix& rhs)
{
*this = *this + rhs * -1.0;
return *this;
}
AutoDiffMatrix operator*(const double rhs) const
{
switch (type_) {
case Z:
return *this;
case I:
{
AutoDiffMatrix retval(*this);
retval.type_ = D;
retval.d_.assign(rows_, rhs);
return retval;
}
case D:
{
AutoDiffMatrix retval(*this);
for (double& elem : retval.d_) {
elem *= rhs;
}
return retval;
}
case S:
{
AutoDiffMatrix retval(*this);
retval.s_ *= rhs;
return retval;
}
}
}
Eigen::VectorXd operator*(const Eigen::VectorXd& rhs) const
{
assert(cols_ == rhs.size());
switch (type_) {
case Z:
return Eigen::VectorXd::Zero(rows_);
case I:
return rhs;
case D:
return Eigen::Map<const Eigen::VectorXd>(d_.data(), rows_) * rhs;
case S:
return s_ * rhs;
}
}
static AutoDiffMatrix sumII(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == I);
assert(rhs.type_ == I);
AutoDiffMatrix retval;
retval.type_ = D;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.d_.assign(lhs.rows_, 2.0);
return retval;
}
static AutoDiffMatrix sumDI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
static_cast<void>(rhs); // Silence release-mode warning.
assert(lhs.type_ == D);
assert(rhs.type_ == I);
AutoDiffMatrix retval = lhs;
for (int r = 0; r < lhs.rows_; ++r) {
retval.d_[r] += 1.0;
}
return retval;
}
static AutoDiffMatrix sumDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == D);
assert(rhs.type_ == D);
AutoDiffMatrix retval = lhs;
for (int r = 0; r < lhs.rows_; ++r) {
retval.d_[r] += rhs.d_[r];
}
return retval;
}
static AutoDiffMatrix sumSI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == S);
assert(rhs.type_ == I);
AutoDiffMatrix retval;
Eigen::SparseMatrix<double> ident = spdiag(Eigen::VectorXd::Ones(lhs.rows_));
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.s_ = lhs.s_ + ident;
return retval;
}
static AutoDiffMatrix sumSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == S);
assert(rhs.type_ == D);
AutoDiffMatrix retval;
Eigen::SparseMatrix<double> diag = spdiag(rhs.d_);
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.s_ = lhs.s_ + diag;
return retval;
}
static AutoDiffMatrix sumSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == S);
assert(rhs.type_ == S);
AutoDiffMatrix retval;
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.s_ = lhs.s_ + rhs.s_;
return retval;
}
static AutoDiffMatrix prodDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == D);
assert(rhs.type_ == D);
AutoDiffMatrix retval;
retval.type_ = D;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.d_.resize(lhs.rows_);
for (int r = 0; r < lhs.rows_; ++r) {
retval.d_[r] = lhs.d_[r] * rhs.d_[r];
}
return retval;
}
static AutoDiffMatrix prodDS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == D);
assert(rhs.type_ == S);
AutoDiffMatrix retval;
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
fastDiagSparseProduct(lhs.d_, rhs.s_, retval.s_);
return retval;
}
static AutoDiffMatrix prodSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == S);
assert(rhs.type_ == D);
AutoDiffMatrix retval;
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
fastSparseDiagProduct(lhs.s_, rhs.d_, retval.s_);
return retval;
}
static AutoDiffMatrix prodSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == S);
assert(rhs.type_ == S);
AutoDiffMatrix retval;
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
fastSparseProduct(lhs.s_, rhs.s_, retval.s_);
return retval;
}
void toSparse(Eigen::SparseMatrix<double>& s) const
{
switch (type_) {
case Z:
s = Eigen::SparseMatrix<double>(rows_, cols_);
return;
case I:
s = spdiag(Eigen::VectorXd::Ones(rows_));
return;
case D:
s = spdiag(d_);
return;
case S:
s = s_;
return;
}
}
int rows() const
{
return rows_;
}
int cols() const
{
return cols_;
}
int nonZeros() const
{
switch (type_) {
case Z:
return 0;
case I:
return rows_;
case D:
return rows_;
case S:
return s_.nonZeros();
}
}
double coeff(const int row, const int col) const
{
switch (type_) {
case Z:
return 0.0;
case I:
return (row == col) ? 1.0 : 0.0;
case D:
return (row == col) ? d_[row] : 0.0;
case S:
return s_.coeff(row, col);
}
}
private:
enum MatrixType { Z, I, D, S };
MatrixType type_;
int rows_;
int cols_;
std::vector<double> d_;
Eigen::SparseMatrix<double> s_;
template <class V>
static inline
Eigen::SparseMatrix<double>
spdiag(const V& d)
{
typedef Eigen::SparseMatrix<double> M;
const int n = d.size();
M mat(n, n);
mat.reserve(Eigen::ArrayXi::Ones(n, 1));
for (M::Index i = 0; i < n; ++i) {
2015-08-27 05:12:41 -05:00
if (d[i] != 0.0) {
mat.insert(i, i) = d[i];
}
}
return mat;
}
};
inline void fastSparseProduct(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
{
res = lhs * rhs;
}
inline void fastSparseProduct(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
{
res = AutoDiffMatrix(lhs) * rhs;
}
inline AutoDiffMatrix operator*(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs)
{
AutoDiffMatrix retval;
fastSparseProduct(lhs, rhs, retval);
return retval;
}
} // namespace Opm
#endif // OPM_AUTODIFFMATRIX_HEADER_INCLUDED