opm-simulators/opm/autodiff/NewtonIterationBlackoilSimple.cpp

84 lines
3.3 KiB
C++
Raw Normal View History

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
2014-04-15 05:10:43 -05:00
#include <config.h>
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Exceptions.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
namespace Opm
{
/// Construct a system solver.
/// \param[in] linsolver linear solver to use
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
NewtonIterationBlackoilSimple::NewtonIterationBlackoilSimple(const parameter::ParameterGroup& param,
const boost::any& parallelInformation)
: iterations_( 0 ), parallelInformation_(parallelInformation)
{
linsolver_.reset(new LinearSolverFactory(param));
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
NewtonIterationBlackoilSimple::SolutionVector
NewtonIterationBlackoilSimple::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
typedef LinearisedBlackoilResidual::ADB ADB;
const int np = residual.material_balance_eq.size();
ADB mass_res = residual.material_balance_eq[0];
for (int phase = 1; phase < np; ++phase) {
mass_res = vertcat(mass_res, residual.material_balance_eq[phase]);
}
const ADB well_res = vertcat(residual.well_flux_eq, residual.well_eq);
const ADB total_residual = collapseJacs(vertcat(mass_res, well_res));
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
SolutionVector dx(SolutionVector::Zero(total_residual.size()));
Opm::LinearSolverInterface::LinearSolverReport rep
= linsolver_->solve(matr.rows(), matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
total_residual.value().data(), dx.data(), parallelInformation_);
2014-10-17 05:25:13 -05:00
// store iterations
iterations_ = rep.iterations;
if (!rep.converged) {
OPM_THROW(LinearSolverProblem,
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
"Linear solver convergence failure.");
}
return dx;
}
const boost::any& NewtonIterationBlackoilSimple::parallelInformation() const
{
return parallelInformation_;
}
} // namespace Opm