first attempt to implement a time step control.

This commit is contained in:
Robert K 2014-10-01 13:50:08 +02:00
parent ce996c2a6c
commit d03f9411b6
9 changed files with 170 additions and 4 deletions

View File

@ -25,6 +25,7 @@
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
#include <opm/autodiff/TimeStepControl.hpp>
struct UnstructuredGrid;
struct Wells;
@ -114,7 +115,8 @@ namespace Opm {
/// \param[in] dt time step size
/// \param[in] state reservoir state
/// \param[in] wstate well state
void
/// \return suggested time step for next step call
double
step(const double dt ,
BlackoilState& state ,
WellStateFullyImplicitBlackoil& wstate);
@ -189,6 +191,8 @@ namespace Opm {
std::vector<int> primalVariable_;
IterationCountTimeStepControl timeStepControl_;
// Private methods.
SolutionState
constantState(const BlackoilState& x,

View File

@ -235,6 +235,7 @@ namespace {
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
ADB::null(),
ADB::null() } )
, timeStepControl_()
{
}
@ -262,7 +263,7 @@ namespace {
template<class T>
void
double
FullyImplicitBlackoilSolver<T>::
step(const double dt,
BlackoilState& x ,
@ -304,10 +305,14 @@ namespace {
bool isOscillate = false;
bool isStagnate = false;
const enum RelaxType relaxtype = relaxType();
int linearIterations = 0;
while ((!converged) && (it < maxIter())) {
V dx = solveJacobianSystem();
// store number of linear iterations used
linearIterations += linsolver_.iterations();
detectNewtonOscillations(residual_history, it, relaxRelTol(), isOscillate, isStagnate);
if (isOscillate) {
@ -337,6 +342,9 @@ namespace {
std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n";
// OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
}
std::cout << "Linear iterations: " << linearIterations << std::endl;
return timeStepControl_.computeTimeStepSize( dt, linearIterations );
}

View File

@ -108,6 +108,7 @@ namespace Opm
/// Construct a system solver.
NewtonIterationBlackoilCPR::NewtonIterationBlackoilCPR(const parameter::ParameterGroup& param)
: iterations_( 0 )
{
use_amg_ = param.getDefault("cpr_use_amg", false);
use_bicgstab_ = param.getDefault("cpr_use_bicgstab", true);
@ -199,6 +200,9 @@ namespace Opm
Dune::InverseOperatorResult result;
linsolve.apply(x, istlb, result);
// store number of iterations
iterations_ = result.iterations;
// Check for failure of linear solver.
if (!result.converged) {
OPM_THROW(std::runtime_error, "Convergence failure for linear solver.");

View File

@ -54,7 +54,10 @@ namespace Opm
/// \return the solution x
virtual SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const;
/// \copydoc NewtonIterationBlackoilInterface::iterations
virtual int iterations () const { return iterations_; }
private:
mutable int iterations_;
bool use_amg_;
bool use_bicgstab_;
};

View File

@ -1,5 +1,6 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
@ -38,6 +39,9 @@ namespace Opm
/// \param[in] residual residual object containing A and b.
/// \return the solution x
virtual SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const = 0;
/// \return number of iterations used during last call of computeNewtonIncrement
virtual int iterations () const = 0;
};
} // namespace Opm

View File

@ -30,6 +30,7 @@ namespace Opm
/// Construct a system solver.
/// \param[in] linsolver linear solver to use
NewtonIterationBlackoilSimple::NewtonIterationBlackoilSimple(const parameter::ParameterGroup& param)
: iterations_( 0 )
{
linsolver_.reset(new LinearSolverFactory(param));
}
@ -58,6 +59,10 @@ namespace Opm
= linsolver_->solve(matr.rows(), matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
total_residual.value().data(), dx.data());
// store iterations
iterations_ = rep.iterations;
if (!rep.converged) {
OPM_THROW(std::runtime_error,
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "

View File

@ -1,5 +1,6 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
@ -48,8 +49,12 @@ namespace Opm
/// \return the solution x
virtual SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const;
/// \copydoc NewtonIterationBlackoilInterface::iterations
virtual int iterations () const { return iterations_; }
private:
std::unique_ptr<LinearSolverInterface> linsolver_;
mutable int iterations_;
};
} // namespace Opm

View File

@ -1,5 +1,6 @@
/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
@ -291,6 +292,8 @@ namespace Opm
std::string tstep_filename = output_dir_ + "/step_timing.txt";
std::ofstream tstep_os(tstep_filename.c_str());
double lastSubStep = timer.currentStepLength();
typename FullyImplicitBlackoilSolver<T>::SolverParameter solverParam( param_ );
// Main simulation loop.
@ -340,13 +343,40 @@ namespace Opm
// Compute reservoir volumes for RESV controls.
computeRESV(timer.currentStepNum(), wells, state, well_state);
// Run a single step of the solver.
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
FullyImplicitBlackoilSolver<T> solver(solverParam, grid_, props_, geo_, rock_comp_props_, *wells, solver_, has_disgas_, has_vapoil_);
if (!threshold_pressures_by_face_.empty()) {
solver.setThresholdPressures(threshold_pressures_by_face_);
}
solver.step(timer.currentStepLength(), state, well_state);
const bool subStepping = false;
if( subStepping )
{
// create sub step simulator timer with previously used sub step size
SubStepSimulatorTimer subStepper( timer, lastSubStep );
while( ! subStepper.done() )
{
const double dt_new = solver.step(subStepper.currentStepLength(), state, well_state);
subStepper.next( dt_new );
}
subStepper.report( std::cout );
// store last small time step for next reportStep
lastSubStep = subStepper.currentStepLength();
std::cout << "Last suggested step size = " << lastSubStep << std::endl;
if( lastSubStep != lastSubStep )
lastSubStep = timer.currentStepLength();
}
else
solver.step(timer.currentStepLength(), state, well_state);
// take time that was used to solve system for this reportStep
solver_timer.stop();
// Report timing.

View File

@ -0,0 +1,103 @@
/*
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TIMESTEPCONTROL_HEADER_INCLUDED
#define OPM_TIMESTEPCONTROL_HEADER_INCLUDED
namespace Opm
{
class TimeStepControlInterface
{
protected:
TimeStepControlInterface() {}
public:
virtual double computeTimeStepSize( const double dt, const int iterations ) const = 0;
virtual ~TimeStepControlInterface () {}
};
class IterationCountTimeStepControl : public TimeStepControlInterface
{
protected:
mutable double prevDt_;
mutable int prevIterations_;
const int targetIterationCount_;
const double adjustmentFactor_;
const int upperTargetIterationCount_;
const int lowerTargetIterationCount_;
public:
IterationCountTimeStepControl()
: prevDt_( 0.0 ), prevIterations_( 0 ),
targetIterationCount_( 100 ), adjustmentFactor_( 1.25 ),
upperTargetIterationCount_( 200 ), lowerTargetIterationCount_( 30 )
{}
double computeTimeStepSize( const double dt, const int iterations ) const
{
// make sure dt is somewhat reliable
assert( dt > 0 && dt == dt );
double newDt = dt;
double derivation = double(std::abs( iterations - targetIterationCount_ )) / double(targetIterationCount_);
if( derivation > 0.1 )
{
if( iterations < targetIterationCount_ )
{
newDt = dt * adjustmentFactor_;
}
else
newDt = dt / adjustmentFactor_;
}
/*
if( prevDt_ > 0 && std::abs( dt - prevDt_ ) > 1e-12 ) {
const double dFdt = double(iterations - prevIterations_) / ( dt - prevDt_ );
if( std::abs( dFdt ) > 1e-12 )
newDt = dt + (targetIterationCount_ - iterations) / dFdt;
else
// if iterations was the same or dts were the same, do some magic
newDt = dt * double( targetIterationCount_ ) / double(targetIterationCount_ - iterations);
}
if( newDt < 0 || ! (prevDt_ > 0) || ( iterations == prevIterations_) )
{
if( iterations > upperTargetIterationCount_ )
newDt = dt / adjustmentFactor_;
else if( iterations < lowerTargetIterationCount_ )
newDt = dt * adjustmentFactor_;
else
newDt = dt;
}
*/
assert( newDt == newDt );
//std::cout << "dt = " << dt << " " << prevDt_ << std::endl;
prevDt_ = dt;
prevIterations_ = iterations;
return newDt;
}
};
} // end namespace OPM
#endif