mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 09:51:57 -06:00
379 lines
13 KiB
C++
379 lines
13 KiB
C++
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||
|
// vi: set et ts=4 sw=4 sts=4:
|
||
|
/*
|
||
|
This file is part of the Open Porous Media project (OPM).
|
||
|
|
||
|
OPM is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
OPM is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
Consult the COPYING file in the top-level source directory of this
|
||
|
module for the precise wording of the license and the list of
|
||
|
copyright holders.
|
||
|
*/
|
||
|
/*!
|
||
|
* \file
|
||
|
*
|
||
|
* \copydoc Opm::PvsPrimaryVariables
|
||
|
*/
|
||
|
#ifndef EWOMS_PVS_PRIMARY_VARIABLES_HH
|
||
|
#define EWOMS_PVS_PRIMARY_VARIABLES_HH
|
||
|
|
||
|
#include "pvsindices.hh"
|
||
|
#include "pvsproperties.hh"
|
||
|
|
||
|
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
|
||
|
#include <opm/models/common/energymodule.hh>
|
||
|
|
||
|
#include <opm/material/constraintsolvers/NcpFlash.hpp>
|
||
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
||
|
#include <opm/material/common/Valgrind.hpp>
|
||
|
#include <opm/material/common/Exceptions.hpp>
|
||
|
|
||
|
#include <dune/common/fvector.hh>
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
namespace Opm {
|
||
|
|
||
|
/*!
|
||
|
* \ingroup PvsModel
|
||
|
*
|
||
|
* \brief Represents the primary variables used in the primary
|
||
|
* variable switching compositional model.
|
||
|
*
|
||
|
* This class is basically a Dune::FieldVector which can retrieve its
|
||
|
* contents from an aribitatry fluid state.
|
||
|
*/
|
||
|
template <class TypeTag>
|
||
|
class PvsPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
|
||
|
{
|
||
|
typedef FvBasePrimaryVariables<TypeTag> ParentType;
|
||
|
typedef PvsPrimaryVariables<TypeTag> ThisType;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) Implementation;
|
||
|
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
||
|
|
||
|
// primary variable indices
|
||
|
enum { pressure0Idx = Indices::pressure0Idx };
|
||
|
enum { switch0Idx = Indices::switch0Idx };
|
||
|
|
||
|
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
|
||
|
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
|
||
|
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
|
||
|
|
||
|
typedef typename Opm::MathToolbox<Evaluation> Toolbox;
|
||
|
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
|
||
|
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
|
||
|
typedef Opm::NcpFlash<Scalar, FluidSystem> NcpFlash;
|
||
|
|
||
|
public:
|
||
|
PvsPrimaryVariables() : ParentType()
|
||
|
{ Opm::Valgrind::SetDefined(*this); }
|
||
|
|
||
|
/*!
|
||
|
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
|
||
|
*/
|
||
|
explicit PvsPrimaryVariables(Scalar value) : ParentType(value)
|
||
|
{
|
||
|
Opm::Valgrind::CheckDefined(value);
|
||
|
Opm::Valgrind::SetDefined(*this);
|
||
|
|
||
|
phasePresence_ = 0;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const
|
||
|
* ImmisciblePrimaryVariables& )
|
||
|
*/
|
||
|
PvsPrimaryVariables(const PvsPrimaryVariables& value) : ParentType(value)
|
||
|
{
|
||
|
Opm::Valgrind::SetDefined(*this);
|
||
|
|
||
|
phasePresence_ = value.phasePresence_;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
|
||
|
*/
|
||
|
template <class FluidState>
|
||
|
void assignMassConservative(const FluidState& fluidState,
|
||
|
const MaterialLawParams& matParams,
|
||
|
bool isInEquilibrium = false)
|
||
|
{
|
||
|
#ifndef NDEBUG
|
||
|
// make sure the temperature is the same in all fluid phases
|
||
|
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
|
||
|
assert(std::abs(fluidState.temperature(0) - fluidState.temperature(phaseIdx)) < 1e-30);
|
||
|
}
|
||
|
#endif // NDEBUG
|
||
|
|
||
|
// for the equilibrium case, we don't need complicated
|
||
|
// computations.
|
||
|
if (isInEquilibrium) {
|
||
|
assignNaive(fluidState);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// use a flash calculation to calculate a fluid state in
|
||
|
// thermodynamic equilibrium
|
||
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
||
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fsFlash;
|
||
|
|
||
|
// use the externally given fluid state as initial value for
|
||
|
// the flash calculation
|
||
|
fsFlash.assign(fluidState);
|
||
|
|
||
|
// calculate the phase densities
|
||
|
paramCache.updateAll(fsFlash);
|
||
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||
|
Scalar rho = FluidSystem::density(fsFlash, paramCache, phaseIdx);
|
||
|
fsFlash.setDensity(phaseIdx, rho);
|
||
|
}
|
||
|
// calculate the "global molarities"
|
||
|
ComponentVector globalMolarities(0.0);
|
||
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
||
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||
|
globalMolarities[compIdx] +=
|
||
|
fsFlash.saturation(phaseIdx) * fsFlash.molarity(phaseIdx, compIdx);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// run the flash calculation
|
||
|
NcpFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
|
||
|
|
||
|
// use the result to assign the primary variables
|
||
|
assignNaive(fsFlash);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Return the fluid phases which are present in a given
|
||
|
* control volume.
|
||
|
*/
|
||
|
short phasePresence() const
|
||
|
{ return phasePresence_; }
|
||
|
|
||
|
/*!
|
||
|
* \brief Set which fluid phases are present in a given control volume.
|
||
|
*
|
||
|
* \param value The new phase presence. The phase with index i is
|
||
|
* present if the i-th bit of \c value is 1.
|
||
|
*/
|
||
|
void setPhasePresence(short value)
|
||
|
{ phasePresence_ = value; }
|
||
|
|
||
|
/*!
|
||
|
* \brief Set whether a given indivividual phase should be present
|
||
|
* or not.
|
||
|
*
|
||
|
* \param phaseIdx The index of the phase which's presence ought to be set or reset.
|
||
|
* \param yesno If true, the presence of the phase is set, else it is reset
|
||
|
*/
|
||
|
void setPhasePresent(unsigned phaseIdx, bool yesno = true)
|
||
|
{
|
||
|
if (yesno)
|
||
|
setPhasePresence(phasePresence_ | (1 << phaseIdx));
|
||
|
else
|
||
|
setPhasePresence(phasePresence_& ~(1 << phaseIdx));
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Returns the index of the phase with's its saturation is
|
||
|
* determined by the closure condition of saturation.
|
||
|
*/
|
||
|
unsigned implicitSaturationIdx() const
|
||
|
{ return lowestPresentPhaseIdx(); }
|
||
|
|
||
|
/*!
|
||
|
* \brief Returns true iff a phase is present for a given phase
|
||
|
* presence.
|
||
|
*
|
||
|
* \param phaseIdx The index of the phase which's presence is
|
||
|
* queried.
|
||
|
* \param phasePresence The bit-map of present phases.
|
||
|
*/
|
||
|
static bool phaseIsPresent(unsigned phaseIdx, short phasePresence)
|
||
|
{ return phasePresence& (1 << phaseIdx); }
|
||
|
|
||
|
/*!
|
||
|
* \brief Returns true iff a phase is present for the current
|
||
|
* phase presence.
|
||
|
*
|
||
|
* \copydoc Doxygen::phaseIdxParam
|
||
|
*/
|
||
|
bool phaseIsPresent(unsigned phaseIdx) const
|
||
|
{ return phasePresence_& (1 << phaseIdx); }
|
||
|
|
||
|
/*!
|
||
|
* \brief Returns the phase with the lowest index that is present.
|
||
|
*/
|
||
|
unsigned lowestPresentPhaseIdx() const
|
||
|
{ return static_cast<unsigned>(ffs(phasePresence_) - 1); }
|
||
|
|
||
|
/*!
|
||
|
* \brief Assignment operator from an other primary variables object
|
||
|
*/
|
||
|
ThisType& operator=(const Implementation& value)
|
||
|
{
|
||
|
ParentType::operator=(value);
|
||
|
phasePresence_ = value.phasePresence_;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Assignment operator from a scalar value
|
||
|
*/
|
||
|
ThisType& operator=(Scalar value)
|
||
|
{
|
||
|
ParentType::operator=(value);
|
||
|
|
||
|
phasePresence_ = 0;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Returns an explcitly stored saturation for a given phase.
|
||
|
*
|
||
|
* (or 0 if the saturation is not explicitly stored.)
|
||
|
*
|
||
|
* \copydoc Doxygen::phaseIdxParam
|
||
|
*/
|
||
|
Evaluation explicitSaturationValue(unsigned phaseIdx, unsigned timeIdx) const
|
||
|
{
|
||
|
if (!phaseIsPresent(phaseIdx) || phaseIdx == lowestPresentPhaseIdx())
|
||
|
// non-present phases have saturation 0
|
||
|
return 0.0;
|
||
|
|
||
|
unsigned varIdx = switch0Idx + phaseIdx - 1;
|
||
|
if (std::is_same<Evaluation, Scalar>::value)
|
||
|
return (*this)[varIdx]; // finite differences
|
||
|
else {
|
||
|
// automatic differentiation
|
||
|
if (timeIdx != 0)
|
||
|
Toolbox::createConstant((*this)[varIdx]);
|
||
|
return Toolbox::createVariable((*this)[varIdx], varIdx);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc ImmisciblePrimaryVariables::assignNaive
|
||
|
*/
|
||
|
template <class FluidState>
|
||
|
void assignNaive(const FluidState& fluidState)
|
||
|
{
|
||
|
typedef Opm::MathToolbox<typename FluidState::Scalar> FsToolbox;
|
||
|
|
||
|
// assign the phase temperatures. this is out-sourced to
|
||
|
// the energy module
|
||
|
EnergyModule::setPriVarTemperatures(*this, fluidState);
|
||
|
|
||
|
// set the pressure of the first phase
|
||
|
(*this)[pressure0Idx] = FsToolbox::value(fluidState.pressure(/*phaseIdx=*/0));
|
||
|
Opm::Valgrind::CheckDefined((*this)[pressure0Idx]);
|
||
|
|
||
|
// determine the phase presence.
|
||
|
phasePresence_ = 0;
|
||
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||
|
// use a NCP condition to determine if the phase is
|
||
|
// present or not
|
||
|
Scalar a = 1;
|
||
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
||
|
a -= FsToolbox::value(fluidState.moleFraction(phaseIdx, compIdx));
|
||
|
}
|
||
|
Scalar b = FsToolbox::value(fluidState.saturation(phaseIdx));
|
||
|
|
||
|
if (b > a)
|
||
|
phasePresence_ |= (1 << phaseIdx);
|
||
|
}
|
||
|
|
||
|
// some phase must be present
|
||
|
if (phasePresence_ == 0)
|
||
|
throw Opm::NumericalIssue("Phase state was 0, i.e., no fluid is present");
|
||
|
|
||
|
// set the primary variables which correspond to mole
|
||
|
// fractions of the present phase which has the lowest index.
|
||
|
unsigned lowestPhaseIdx = lowestPresentPhaseIdx();
|
||
|
for (unsigned switchIdx = 0; switchIdx < numPhases - 1; ++switchIdx) {
|
||
|
unsigned phaseIdx = switchIdx;
|
||
|
unsigned compIdx = switchIdx + 1;
|
||
|
if (switchIdx >= lowestPhaseIdx)
|
||
|
++phaseIdx;
|
||
|
|
||
|
if (phaseIsPresent(phaseIdx)) {
|
||
|
(*this)[switch0Idx + switchIdx] = FsToolbox::value(fluidState.saturation(phaseIdx));
|
||
|
Opm::Valgrind::CheckDefined((*this)[switch0Idx + switchIdx]);
|
||
|
}
|
||
|
else {
|
||
|
(*this)[switch0Idx + switchIdx] =
|
||
|
FsToolbox::value(fluidState.moleFraction(lowestPhaseIdx, compIdx));
|
||
|
Opm::Valgrind::CheckDefined((*this)[switch0Idx + switchIdx]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// set the mole fractions in of the remaining components in
|
||
|
// the phase with the lowest index
|
||
|
for (unsigned compIdx = numPhases - 1; compIdx < numComponents - 1; ++compIdx) {
|
||
|
(*this)[switch0Idx + compIdx] =
|
||
|
FsToolbox::value(fluidState.moleFraction(lowestPhaseIdx, compIdx + 1));
|
||
|
Opm::Valgrind::CheckDefined((*this)[switch0Idx + compIdx]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc FlashPrimaryVariables::print
|
||
|
*/
|
||
|
void print(std::ostream& os = std::cout) const
|
||
|
{
|
||
|
os << "(p_" << FluidSystem::phaseName(0) << " = "
|
||
|
<< this->operator[](pressure0Idx);
|
||
|
unsigned lowestPhaseIdx = lowestPresentPhaseIdx();
|
||
|
for (unsigned switchIdx = 0; switchIdx < numPhases - 1; ++switchIdx) {
|
||
|
unsigned phaseIdx = switchIdx;
|
||
|
unsigned compIdx = switchIdx + 1;
|
||
|
if (phaseIdx >= lowestPhaseIdx)
|
||
|
++phaseIdx; // skip the saturation of the present
|
||
|
// phase with the lowest index
|
||
|
|
||
|
if (phaseIsPresent(phaseIdx)) {
|
||
|
os << ", S_" << FluidSystem::phaseName(phaseIdx) << " = "
|
||
|
<< (*this)[switch0Idx + switchIdx];
|
||
|
}
|
||
|
else {
|
||
|
os << ", x_" << FluidSystem::phaseName(lowestPhaseIdx) << "^"
|
||
|
<< FluidSystem::componentName(compIdx) << " = "
|
||
|
<< (*this)[switch0Idx + switchIdx];
|
||
|
}
|
||
|
}
|
||
|
for (unsigned compIdx = numPhases - 1; compIdx < numComponents - 1;
|
||
|
++compIdx) {
|
||
|
os << ", x_" << FluidSystem::phaseName(lowestPhaseIdx) << "^"
|
||
|
<< FluidSystem::componentName(compIdx + 1) << " = "
|
||
|
<< (*this)[switch0Idx + compIdx];
|
||
|
}
|
||
|
os << ")";
|
||
|
os << ", phase presence: " << static_cast<int>(phasePresence_) << std::flush;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
short phasePresence_;
|
||
|
};
|
||
|
|
||
|
} // namespace Opm
|
||
|
|
||
|
#endif
|