opm-simulators/opm/simulators/linalg/FlexibleSolver.hpp

175 lines
7.3 KiB
C++
Raw Normal View History

/*
Copyright 2019 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED
#define OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/umfpack.hh>
#include <boost/property_tree/ptree.hpp>
namespace Dune
{
/// A solver class that encapsulates all needed objects for a linear solver
/// (operator, scalar product, iterative solver and preconditioner) and sets
/// them up based on runtime parameters, using the PreconditionerFactory for
/// setting up preconditioners.
template <class MatrixTypeT, class VectorTypeT>
class FlexibleSolver : public Dune::InverseOperator<VectorTypeT, VectorTypeT>
{
public:
using MatrixType = MatrixTypeT;
using VectorType = VectorTypeT;
/// Create a sequential solver.
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix)
{
init(prm, matrix, Dune::Amg::SequentialInformation());
}
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
template <class Comm>
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix, const Comm& comm)
{
init(prm, matrix, comm);
}
virtual void apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res) override
{
linsolver_->apply(x, rhs, res);
}
virtual void apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res) override
{
linsolver_->apply(x, rhs, reduction, res);
}
/// Type of the contained preconditioner.
using AbstractPrecondType = Dune::PreconditionerWithUpdate<VectorType, VectorType>;
/// Access the contained preconditioner.
AbstractPrecondType& preconditioner()
{
return *preconditioner_;
}
virtual Dune::SolverCategory::Category category() const override
{
return linearoperator_->category();
}
private:
using AbstractOperatorType = Dune::AssembledLinearOperator<MatrixType, VectorType, VectorType>;
using AbstractScalarProductType = Dune::ScalarProduct<VectorType>;
using AbstractSolverType = Dune::InverseOperator<VectorType, VectorType>;
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
template <class Comm>
void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm, const Comm& comm)
{
// Parallel case.
using ParOperatorType = Dune::OverlappingSchwarzOperator<MatrixType, VectorType, VectorType, Comm>;
auto linop = std::make_shared<ParOperatorType>(matrix, comm);
linearoperator_ = linop;
preconditioner_
= Opm::PreconditionerFactory<ParOperatorType, Comm>::create(*linop, prm.get_child("preconditioner"), comm);
scalarproduct_ = Dune::createScalarProduct<VectorType, Comm>(comm, linearoperator_->category());
}
void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm, const Dune::Amg::SequentialInformation&)
{
// Sequential case.
using SeqOperatorType = Dune::MatrixAdapter<MatrixType, VectorType, VectorType>;
auto linop = std::make_shared<SeqOperatorType>(matrix);
linearoperator_ = linop;
preconditioner_ = Opm::PreconditionerFactory<SeqOperatorType>::create(*linop, prm.get_child("preconditioner"));
scalarproduct_ = std::make_shared<Dune::SeqScalarProduct<VectorType>>();
}
void initSolver(const boost::property_tree::ptree& prm)
{
const double tol = prm.get<double>("tol");
const int maxiter = prm.get<int>("maxiter");
const int verbosity = prm.get<int>("verbosity");
const std::string solver_type = prm.get<std::string>("solver");
if (solver_type == "bicgstab") {
linsolver_.reset(new Dune::BiCGSTABSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "loopsolver") {
linsolver_.reset(new Dune::LoopSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "gmres") {
int restart = prm.get<int>("restart");
linsolver_.reset(new Dune::RestartedGMResSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol,
restart, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
#if HAVE_SUITESPARSE_UMFPACK
} else if (solver_type == "umfpack") {
bool dummy = false;
linsolver_.reset(new Dune::UMFPack<MatrixType>(linearoperator_->getmat(), verbosity, dummy));
#endif
} else {
std::string msg("Solver not known ");
msg += solver_type;
throw std::runtime_error(msg);
}
}
// Main initialization routine.
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
template <class Comm>
void init(const boost::property_tree::ptree& prm, const MatrixType& matrix, const Comm& comm)
{
initOpPrecSp(matrix, prm, comm);
initSolver(prm);
}
std::shared_ptr<AbstractOperatorType> linearoperator_;
std::shared_ptr<AbstractPrecondType> preconditioner_;
std::shared_ptr<AbstractScalarProductType> scalarproduct_;
std::shared_ptr<AbstractSolverType> linsolver_;
};
} // namespace Dune
#endif // OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED