opm-simulators/ebos/eclequilinitializer.hh

304 lines
13 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Ewoms::EclEquilInitializer
*/
#ifndef EWOMS_ECL_EQUIL_INITIALIZER_HH
#define EWOMS_ECL_EQUIL_INITIALIZER_HH
2016-01-17 14:15:27 -06:00
#include <ewoms/common/propertysystem.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
// the ordering of these includes matters. do not touch it if you're not prepared to deal
// with some trouble!
#include <dune/grid/cpgrid/GridHelpers.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/simulator/initStateEquil.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <vector>
namespace Ewoms {
2016-01-17 14:15:27 -06:00
namespace Properties {
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(FluidSystem);
NEW_PROP_TAG(GridView);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(MaterialLaw);
NEW_PROP_TAG(EnableSwatinit);
2016-01-17 14:15:27 -06:00
}
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Computes the initial condition based on the EQUIL keyword from ECL.
*
* So far, it uses the "initStateEquil()" function from opm-core. Since this method is
* very much glued into the opm-core data structures, it should be reimplemented in the
* medium to long term for some significant memory savings and less significant
* performance improvements.
*/
template <class TypeTag>
class EclEquilInitializer
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> ScalarFluidState;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { numComponents = FluidSystem::numComponents };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { dimWorld = GridView::dimensionworld };
public:
template <class MaterialLawManager>
EclEquilInitializer(const Simulator& simulator,
std::shared_ptr<MaterialLawManager> materialLawManager)
: simulator_(simulator)
{
const auto& gridManager = simulator.gridManager();
const auto deck = gridManager.deck();
const auto eclState = gridManager.eclState();
const auto& equilGrid = gridManager.equilGrid();
unsigned numElems = gridManager.grid().size(0);
unsigned numEquilElems = gridManager.equilGrid().size(0);
unsigned numCartesianElems = gridManager.cartesianSize();
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::ThreePhaseMaterialTraits<double,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> EquilTraits;
// create a separate instance of the material law manager just because opm-core
// only supports double as the type for scalars (but ebos may use float or quad)
std::vector<int> compressedToCartesianEquilElemIdx(numEquilElems);
std::vector<int> equilCartesianToCompressed( gridManager.equilCartesianSize(), -1 );
for (unsigned equilElemIdx = 0; equilElemIdx < numEquilElems; ++equilElemIdx)
{
unsigned int equilCartesianIdx = gridManager.equilCartesianIndex(equilElemIdx);
compressedToCartesianEquilElemIdx[equilElemIdx] = equilCartesianIdx;
equilCartesianToCompressed[ equilCartesianIdx ] = equilElemIdx;
}
auto equilMaterialLawManager =
std::make_shared<Opm::EclMaterialLawManager<EquilTraits> >();
equilMaterialLawManager->initFromDeck(*deck, *eclState, compressedToCartesianEquilElemIdx);
// create the data structures which are used by initStateEquil()
Opm::parameter::ParameterGroup tmpParam;
Opm::BlackoilPropertiesFromDeck opmBlackoilProps(
*gridManager.deck(),
*gridManager.eclState(),
equilMaterialLawManager,
Opm::UgGridHelpers::numCells(equilGrid),
Opm::UgGridHelpers::globalCell(equilGrid),
Opm::UgGridHelpers::cartDims(equilGrid),
tmpParam);
// initialize the boiler plate of opm-core the state structure.
const auto opmPhaseUsage = opmBlackoilProps.phaseUsage();
Opm::BlackoilState opmBlackoilState(numEquilElems,
/*numFaces=*/0, // we don't care here
opmPhaseUsage.num_phases);
// do the actual computation.
Opm::initStateEquil(equilGrid,
opmBlackoilProps,
*gridManager.deck(),
*gridManager.eclState(),
simulator.problem().gravity()[dimWorld - 1],
opmBlackoilState);
std::vector<int> localToEquilIndex( numElems, -1 );
for( unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx )
{
const int cartesianIndex = gridManager.cartesianIndex( elemIdx );
assert( equilCartesianToCompressed[ cartesianIndex ] >= 0 );
localToEquilIndex[ elemIdx ] = equilCartesianToCompressed[ cartesianIndex ];
}
// copy the result into the array of initial fluid states
initialFluidStates_.resize(numCartesianElems);
for (unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
auto& fluidState = initialFluidStates_[cartesianElemIdx];
const unsigned int equilElemIdx = localToEquilIndex[ elemIdx ];
// get the PVT region index of the current element
unsigned regionIdx = simulator_.problem().pvtRegionIndex(elemIdx);
// set the phase saturations
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar S;
if (!FluidSystem::phaseIsActive(phaseIdx))
S = 0.0;
else {
unsigned opmPhasePos = 10000;
switch (phaseIdx) {
case oilPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Liquid];
break;
case gasPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Vapour];
break;
case waterPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Aqua];
break;
}
S = opmBlackoilState.saturation()[equilElemIdx*opmPhaseUsage.num_phases
+ opmPhasePos];
}
fluidState.setSaturation(phaseIdx, S);
}
// set the temperature
const auto& temperatureVector = opmBlackoilState.temperature();
Scalar T = FluidSystem::surfaceTemperature;
if (!temperatureVector.empty())
T = temperatureVector[equilElemIdx];
fluidState.setTemperature(T);
// set the phase pressures. the Opm::BlackoilState only provides the oil
// phase pressure, so we need to calculate the other phases' pressures
// ourselfs.
Dune::FieldVector< Scalar, numPhases > pC( 0 );
const auto& matParams = simulator.problem().materialLawParams(elemIdx);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
Scalar po = opmBlackoilState.pressure()[equilElemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
// reset the phase compositions
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
// the composition of the water phase is simple: it only consists of the
// water component.
fluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
if (FluidSystem::enableDissolvedGas()) {
// for gas and oil we have to translate surface volumes to mole fractions
// before we can set the composition in the fluid state
Scalar Rs = opmBlackoilState.gasoilratio()[equilElemIdx];
Scalar RsSat = FluidSystem::saturatedDissolutionFactor(fluidState, oilPhaseIdx, regionIdx);
if (Rs > RsSat)
Rs = RsSat;
// convert the Rs factor to mole fraction dissolved gas in oil
Scalar XoG = FluidSystem::convertRsToXoG(Rs, regionIdx);
Scalar xoG = FluidSystem::convertXoGToxoG(XoG, regionIdx);
fluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, 1 - xoG);
fluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
}
// retrieve the surface volume of vaporized gas
if (FluidSystem::enableVaporizedOil()) {
Scalar Rv = opmBlackoilState.rv()[equilElemIdx];
Scalar RvSat = FluidSystem::saturatedDissolutionFactor(fluidState, gasPhaseIdx, regionIdx);
if (Rv > RvSat)
Rv = RvSat;
// convert the Rs factor to mole fraction dissolved gas in oil
Scalar XgO = FluidSystem::convertRvToXgO(Rv, regionIdx);
Scalar xgO = FluidSystem::convertXgOToxgO(XgO, regionIdx);
fluidState.setMoleFraction(gasPhaseIdx, oilCompIdx, xgO);
fluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1 - xgO);
}
}
// deal with the capillary pressure modification due to SWATINIT. this is
// only necessary because, the fine equilibration code from opm-core requires
// its own grid and its own material law manager...
if (GET_PROP_VALUE(TypeTag, EnableSwatinit)) {
std::vector<int> cartesianToCompressedElemIdx(numCartesianElems, -1);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
int cartElemIdx = gridManager.cartesianIndex(elemIdx);
cartesianToCompressedElemIdx[cartElemIdx] = elemIdx;
}
for (unsigned equilElemIdx = 0; equilElemIdx < numEquilElems; ++equilElemIdx) {
int cartElemIdx = gridManager.equilCartesianIndex(equilElemIdx);
assert(cartElemIdx >= 0);
int elemIdx = cartesianToCompressedElemIdx[cartElemIdx];
if (elemIdx < 0)
// the element is present in the grid for used for equilibration but
// it isn't present in the one used for the simulation. the most
// probable reason for this is that the simulation grid was load
// balanced.
continue;
auto& scalingPoints = materialLawManager->oilWaterScaledEpsPointsDrainage(equilElemIdx);
const auto& equilScalingPoints = equilMaterialLawManager->oilWaterScaledEpsPointsDrainage(equilElemIdx);
scalingPoints.setMaxPcnw(equilScalingPoints.maxPcnw());
}
}
}
/*!
* \brief Return the initial thermodynamic state which should be used as the initial
* condition.
*
* This is supposed to correspond to hydrostatic conditions.
*/
const ScalarFluidState& initialFluidState(unsigned elemIdx) const
{
const auto& gridManager = simulator_.gridManager();
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
return initialFluidStates_[cartesianElemIdx];
}
protected:
const Simulator& simulator_;
std::vector<ScalarFluidState> initialFluidStates_;
};
} // namespace Ewoms
#endif