opm-simulators/opm/simulators/wells/VFPProdProperties.cpp

194 lines
7.3 KiB
C++
Raw Normal View History

2015-08-11 02:47:06 -05:00
/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/VFPProdTable.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
2015-08-11 02:47:06 -05:00
2015-08-11 03:24:55 -05:00
namespace Opm {
2015-08-11 02:47:06 -05:00
2015-08-11 03:24:55 -05:00
2015-08-11 02:47:06 -05:00
double VFPProdProperties::thp(int table_id,
const double& aqua,
const double& liquid,
const double& vapour,
const double& bhp_arg,
const double& alq) const {
const VFPProdTable& table = detail::getTable(m_tables, table_id);
2015-08-11 02:47:06 -05:00
2020-05-28 09:31:28 -05:00
// Find interpolation variables.
double flo = 0.0;
double wfr = 0.0;
double gfr = 0.0;
if (aqua == 0.0 && liquid == 0.0 && vapour == 0.0) {
// All zero, likely at initial state.
// Set FLO variable to minimum to avoid extrapolation.
// The water and gas fractions are kept at 0.0.
flo = table.getFloAxis().front();
2020-05-28 09:31:28 -05:00
} else {
// The usual case.
// Recall that production rate is negative in Opm, so switch the sign.
2021-02-15 12:56:55 -06:00
flo = -detail::getFlo(table, aqua, liquid, vapour);
wfr = detail::getWFR(table, aqua, liquid, vapour);
gfr = detail::getGFR(table, aqua, liquid, vapour);
2020-05-28 09:31:28 -05:00
}
2015-08-11 02:47:06 -05:00
const std::vector<double> thp_array = table.getTHPAxis();
2015-08-11 02:47:06 -05:00
int nthp = thp_array.size();
/**
* Find the function bhp_array(thp) by creating a 1D view of the data
* by interpolating for every value of thp. This might be somewhat
2020-05-28 09:31:28 -05:00
* expensive, but let us assome that nthp is small.
2015-08-11 02:47:06 -05:00
*/
auto flo_i = detail::findInterpData( flo, table.getFloAxis());
auto wfr_i = detail::findInterpData( wfr, table.getWFRAxis());
auto gfr_i = detail::findInterpData( gfr, table.getGFRAxis());
auto alq_i = detail::findInterpData( alq, table.getALQAxis());
2015-08-11 02:47:06 -05:00
std::vector<double> bhp_array(nthp);
for (int i=0; i<nthp; ++i) {
2015-08-11 03:24:55 -05:00
auto thp_i = detail::findInterpData(thp_array[i], thp_array);
bhp_array[i] = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
2015-08-11 02:47:06 -05:00
}
2015-09-02 06:02:27 -05:00
double retval = detail::findTHP(bhp_array, thp_array, bhp_arg);
return retval;
2015-08-11 02:47:06 -05:00
}
double VFPProdProperties::bhp(int table_id,
const double& aqua,
const double& liquid,
const double& vapour,
const double& thp_arg,
const double& alq) const {
const VFPProdTable& table = detail::getTable(m_tables, table_id);
2015-08-11 02:47:06 -05:00
detail::VFPEvaluation retval = detail::bhp(table, aqua, liquid, vapour, thp_arg, alq);
return retval.value;
}
2015-08-11 03:24:55 -05:00
const VFPProdTable& VFPProdProperties::getTable(const int table_id) const {
return detail::getTable(m_tables, table_id);
}
bool VFPProdProperties::hasTable(const int table_id) const {
return detail::hasTable(m_tables, table_id);
}
std::vector<double>
VFPProdProperties::
bhpwithflo(const std::vector<double>& flos,
const int table_id,
const double wfr,
const double gfr,
const double thp,
const double alq,
const double dp) const
{
// Get the table
const VFPProdTable& table = detail::getTable(m_tables, table_id);
const auto thp_i = detail::findInterpData( thp, table.getTHPAxis()); // assume constant
const auto wfr_i = detail::findInterpData( wfr, table.getWFRAxis());
const auto gfr_i = detail::findInterpData( gfr, table.getGFRAxis());
const auto alq_i = detail::findInterpData( alq, table.getALQAxis()); //assume constant
std::vector<double> bhps(flos.size(), 0.);
for (size_t i = 0; i < flos.size(); ++i) {
// Value of FLO is negative in OPM for producers, but positive in VFP table
const auto flo_i = detail::findInterpData(-flos[i], table.getFloAxis());
const detail::VFPEvaluation bhp_val = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
// TODO: this kind of breaks the conventions for the functions here by putting dp within the function
bhps[i] = bhp_val.value - dp;
}
return bhps;
}
void VFPProdProperties::addTable(const VFPProdTable& new_table) {
this->m_tables.emplace( new_table.getTableNum(), new_table );
}
template <class EvalWell>
EvalWell VFPProdProperties::bhp(const int table_id,
const EvalWell& aqua,
const EvalWell& liquid,
const EvalWell& vapour,
const double& thp,
const double& alq) const
{
//Get the table
const VFPProdTable& table = detail::getTable(m_tables, table_id);
EvalWell bhp = 0.0 * aqua;
//Find interpolation variables
EvalWell flo = detail::getFlo(table, aqua, liquid, vapour);
EvalWell wfr = detail::getWFR(table, aqua, liquid, vapour);
EvalWell gfr = detail::getGFR(table, aqua, liquid, vapour);
//First, find the values to interpolate between
//Value of FLO is negative in OPM for producers, but positive in VFP table
auto flo_i = detail::findInterpData(-flo.value(), table.getFloAxis());
auto thp_i = detail::findInterpData( thp, table.getTHPAxis()); // assume constant
auto wfr_i = detail::findInterpData( wfr.value(), table.getWFRAxis());
auto gfr_i = detail::findInterpData( gfr.value(), table.getGFRAxis());
auto alq_i = detail::findInterpData( alq, table.getALQAxis()); //assume constant
detail::VFPEvaluation bhp_val = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
bhp = (bhp_val.dwfr * wfr) + (bhp_val.dgfr * gfr) - (bhp_val.dflo * flo);
bhp.setValue(bhp_val.value);
return bhp;
}
#define INSTANCE(...) \
template __VA_ARGS__ VFPProdProperties::bhp<__VA_ARGS__>(const int, \
const __VA_ARGS__&, const __VA_ARGS__&, const __VA_ARGS__&, \
const double&, const double&) const;
INSTANCE(DenseAd::Evaluation<double, -1, 4u>)
INSTANCE(DenseAd::Evaluation<double, -1, 5u>)
INSTANCE(DenseAd::Evaluation<double, -1, 6u>)
INSTANCE(DenseAd::Evaluation<double, -1, 7u>)
INSTANCE(DenseAd::Evaluation<double, -1, 8u>)
INSTANCE(DenseAd::Evaluation<double, -1, 9u>)
INSTANCE(DenseAd::Evaluation<double, -1, 10u>)
INSTANCE(DenseAd::Evaluation<double, 3, 0u>)
INSTANCE(DenseAd::Evaluation<double, 4, 0u>)
INSTANCE(DenseAd::Evaluation<double, 5, 0u>)
INSTANCE(DenseAd::Evaluation<double, 6, 0u>)
INSTANCE(DenseAd::Evaluation<double, 7, 0u>)
INSTANCE(DenseAd::Evaluation<double, 8, 0u>)
2015-08-11 02:47:06 -05:00
}