adding function calculateBhpWithTHPTarget to VFPProdProperties

it calculate bhp value based on THP target/limit, VFP curves and
inflow-performance relationship
This commit is contained in:
Kai Bao 2018-11-14 15:08:16 +01:00
parent 9b5e25ae0f
commit 8445c802c0
4 changed files with 161 additions and 5 deletions

View File

@ -1315,8 +1315,9 @@ namespace Opm
}
for (int p = 0; p < number_of_phases_; ++p) {
ipr_a_[p] += ipr_a_perf[p];
ipr_b_[p] += ipr_b_perf[p];
// TODO: double check the indices here
ipr_a_[ebosCompIdxToFlowCompIdx(p)] += ipr_a_perf[p];
ipr_b_[ebosCompIdxToFlowCompIdx(p)] += ipr_b_perf[p];
}
}
}

View File

@ -808,7 +808,7 @@ inline bool findIntersectionForBhp(const std::vector<double>&rate_samples,
const double flo_rate2,
const double bhp1,
const double bhp2,
double& bhp)
double& obtained_bhp)
{
// there possibly two intersection point, then we choose the bigger one
// we choose the bigger one, then it will be the later one in the rate_samples
@ -851,10 +851,10 @@ inline bool findIntersectionForBhp(const std::vector<double>&rate_samples,
const std::array<DataPoint, 2> line { DataPoint{flo_rate1, bhp1},
DataPoint{flo_rate2, bhp2} };
const bool inter_section_found = findIntersection(line_segment, line, bhp);
const bool inter_section_found = findIntersection(line_segment, line, obtained_bhp);
if (inter_section_found) {
std::cout << " found a bhp is " << bhp << std::endl;
std::cout << " found a bhp is " << obtained_bhp << std::endl;
return true;
} else {
std::cout << " did not find the intersection point " << std::endl;

View File

@ -110,4 +110,136 @@ bool VFPProdProperties::hasTable(const int table_id) const {
}
std::vector<double>
VFPProdProperties::
bhpwithflo(const std::vector<double>& flos,
const int table_id,
const double wfr,
const double gfr,
const double thp,
const double alq,
const double dp) const
{
// Get the table
const VFPProdTable* table = detail::getTable(m_tables, table_id);
const auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant
const auto wfr_i = detail::findInterpData( wfr, table->getWFRAxis());
const auto gfr_i = detail::findInterpData( gfr, table->getGFRAxis());
const auto alq_i = detail::findInterpData( alq, table->getALQAxis()); //assume constant
std::vector<double> bhps(flos.size(), 0.);
for (size_t i = 0; i < flos.size(); ++i) {
// Value of FLO is negative in OPM for producers, but positive in VFP table
const auto flo_i = detail::findInterpData(-flos[i], table->getFloAxis());
const detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
// TODO: this kind of breaks the conventions for the functions here by putting dp within the function
bhps[i] = bhp_val.value - dp;
}
return bhps;
}
double
VFPProdProperties::
calculateBhpWithTHPTarget(const std::vector<double>& ipr_a,
const std::vector<double>& ipr_b,
const double bhp_limit,
const double thp_table_id,
const double thp_limit,
const double alq,
const double dp) const
{
// For producers, bhp_safe_limit is the highest BHP value that can still produce based on IPR
double bhp_safe_limit = 1.e100;
for (size_t i = 0; i < ipr_a.size(); ++i) {
if (ipr_b[i] == 0.) continue;
const double bhp = ipr_a[i] / ipr_b[i];
if (bhp < bhp_safe_limit) {
bhp_safe_limit = bhp;
}
}
// Here, we use the middle point between the bhp_limit and bhp_safe_limit to calculate the ratio of the flow
// and the middle point serves one of the two points to describe inflow performance relationship line
const double bhp_middle = (bhp_limit + bhp_safe_limit) / 2.0;
// FLO is the rate based on the type specified with the VFP table
// The two points correspond to the bhp values of bhp_limit, and the middle of bhp_limit and bhp_safe_limit
// for producers, the rates are negative
std::vector<double> rates_bhp_limit(ipr_a.size());
std::vector<double> rates_bhp_middle(ipr_a.size());
for (size_t i = 0; i < rates_bhp_limit.size(); ++i) {
rates_bhp_limit[i] = bhp_limit * ipr_b[i] - ipr_a[i];
rates_bhp_middle[i] = bhp_middle * ipr_b[i] - ipr_a[i];
}
// TODO: we need to be careful that there is nothings wrong related to the indices here
const int Water = BlackoilPhases::Aqua;
const int Oil = BlackoilPhases::Liquid;
const int Gas = BlackoilPhases::Vapour;
const VFPProdTable* table = detail::getTable(m_tables, thp_table_id);
const double aqua_bhp_limit = rates_bhp_limit[Water];
const double liquid_bhp_limit = rates_bhp_limit[Oil];
const double vapour_bhp_limit = rates_bhp_limit[Gas];
const double flo_bhp_limit = detail::getFlo(aqua_bhp_limit, liquid_bhp_limit, vapour_bhp_limit, table->getFloType() );
const double aqua_bhp_middle = rates_bhp_middle[Water];
const double liquid_bhp_middle = rates_bhp_middle[Oil];
const double vapour_bhp_middle = rates_bhp_middle[Gas];
const double flo_bhp_middle = detail::getFlo(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getFloType() );
// we use the ratios based on the middle value of bhp_limit and bhp_safe_limit
const double wfr = detail::getWFR(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getWFRType());
const double gfr = detail::getGFR(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getGFRType());
// we get the flo sampling points from the table,
// then extend it with zero and rate under bhp_limit for extrapolation
std::vector<double> flo_samples = table->getFloAxis();
if (flo_samples[0] > 0.) {
flo_samples.insert(flo_samples.begin(), 0.);
}
if (flo_samples.back() < std::abs(flo_bhp_limit)) {
flo_samples.push_back(std::abs(flo_bhp_limit));
}
// kind of unncessarily following the tradation that producers should have negative rates
// the key is here that it should be consistent with the function bhpwithflo
for (double& value : flo_samples) {
value = -value;
}
// get the bhp sampling values based on the flo sample values
const std::vector<double> bhp_flo_samples = bhpwithflo(flo_samples, thp_table_id, wfr, gfr, thp_limit, alq, dp);
double obtain_bhp = 0.;
const bool obtain_solution_with_thp_limit = detail::findIntersectionForBhp(flo_samples, bhp_flo_samples,
flo_bhp_middle, flo_bhp_limit, bhp_middle, bhp_limit, obtain_bhp);
// \Note: assuming not that negative BHP does not make sense
if (obtain_solution_with_thp_limit && obtain_bhp > 0.) {
// getting too high bhp that might cause negative rates (rates in the undesired direction)
if (obtain_bhp >= bhp_safe_limit) {
std::cout << " Look like we are getting a too high BHP value from the THP constraint "
<< " which might cause problems later " << std::endl;
std::cout << " obtain_bhp " << obtain_bhp << " bhp_safe_limit " << bhp_safe_limit << std::endl;
}
return obtain_bhp;
} else {
std::cout << " COULD NOT find an Intersection point " << std::endl;
return -100.;
}
}
}

View File

@ -170,7 +170,30 @@ public:
return m_tables.empty();
}
/**
* Calculate the Bhp value from the THP target/constraint value
* based on inflow performance relationship and VFP curves
*/
double
calculateBhpWithTHPTarget(const std::vector<double>& ipr_a,
const std::vector<double>& ipr_b,
const double bhp_limit,
const double thp_table_id,
const double thp_limit,
const double alq,
const double dp) const;
protected:
// calculate a group bhp values with a group of flo rate values
std::vector<double> bhpwithflo(const std::vector<double>& flos,
const int table_id,
const double wfr,
const double gfr,
const double thp,
const double alq,
const double dp) const;
// Map which connects the table number with the table itself
std::map<int, const VFPProdTable*> m_tables;
};