runs first steps of norne

This commit is contained in:
hnil 2022-06-10 22:58:32 +02:00 committed by Atgeirr Flø Rasmussen
parent 0a178daaf1
commit 060877a08b
3 changed files with 186 additions and 33 deletions

View File

@ -39,6 +39,7 @@
#include <algorithm>
#include <vector>
#include <opm/models/discretization/common/smallelementcontext.hh>
namespace Opm {
/*!
@ -61,11 +62,15 @@ class EclThresholdPressure : public EclGenericThresholdPressure<GetPropType<Type
GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::ElementMapper>,
GetPropType<TypeTag, Properties::Scalar>>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
enum { dimWorld = GridView::dimensionworld };
enum { enableExperiments = getPropValue<TypeTag, Properties::EnableExperiments>() };
enum { numPhases = FluidSystem::numPhases };
@ -95,6 +100,95 @@ public:
}
private:
template<class Face,class Stencil,class ElemCtx>
double calculateMaxDp(Face& face, Stencil& stencil,
ElemCtx& elemCtx,const unsigned& scvfIdx,
const unsigned& i,const unsigned& j,const unsigned& insideElemIdx,const unsigned& outsideElemIdx){
typedef MathToolbox<Evaluation> Toolbox;
elemCtx.updateIntensiveQuantities(/*timeIdx=*/0);
elemCtx.updateExtensiveQuantities(/*timeIdx=*/0);
// determine the maximum difference of the pressure of any phase over the
// intersection
Scalar pth = 0.0;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0);
if (up.mobility(phaseIdx) > 0.0) {
Scalar phaseVal = Toolbox::value(extQuants.pressureDifference(phaseIdx));
pth = std::max(pth, std::abs(phaseVal));
}
}
return pth;
}
template<class Face,class Stencil>
double calculateMaxDp(Face& face, Stencil& stencil,
SmallElementContext<TypeTag>& elemCtx,const unsigned& scvfIdx,
const unsigned& i,const unsigned& j,
const unsigned& insideElemIdx,const unsigned& outsideElemIdx){
typedef MathToolbox<Evaluation> Toolbox;
// determine the maximum difference of the pressure of any phase over the
// intersection
Scalar pth = 0.0;
//const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
Scalar Vin = elemCtx.dofVolume(i, /*timeIdx=*/0);
Scalar Vex = elemCtx.dofVolume(j, /*timeIdx=*/0);
Scalar thpres = 0.0;//NB ??problem.thresholdPressure(globalIndexIn, globalIndexEx);
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
const auto& problem = elemCtx.problem();
Scalar g = problem.gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, /*timeIdx*/0);
const auto& intQuantsEx = elemCtx.intensiveQuantities(j, /*timeIdx*/0);
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(elemCtx, i, /*timeIdx*/0);
Scalar zEx = problem.dofCenterDepth(elemCtx, j, /*timeIdx*/0);
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
short dnIdx;
//
short upIdx;
Evaluation pressureDifference;
ExtensiveQuantities::calculatePhasePressureDiff_(upIdx,
dnIdx,
pressureDifference,
intQuantsIn,
intQuantsEx,
scvfIdx,//input
/*timeIdx*/0,//input
phaseIdx,//input
i,//input
j,//intput
Vin,
Vex,
insideElemIdx,
outsideElemIdx,
distZ*g,
thpres);
const IntensiveQuantities& up = (upIdx == i) ? intQuantsIn : intQuantsEx;
if (up.mobility(phaseIdx) > 0.0) {
Scalar phaseVal = Toolbox::value(pressureDifference);
pth = std::max(pth, std::abs(phaseVal));
}
}
return pth;
}
// compute the defaults of the threshold pressures using the initial condition
void computeDefaultThresholdPressures_()
{
@ -107,16 +201,21 @@ private:
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
ElementContext elemCtx(simulator_);
simulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updateAll(elem);
elemCtx.updateStencil(elem);
//
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
for (unsigned scvfIdx = 0; scvfIdx < stencil.numInteriorFaces(); ++ scvfIdx) {
const auto& face = stencil.interiorFace(scvfIdx);
unsigned i = face.interiorIndex();
@ -127,30 +226,21 @@ private:
unsigned equilRegionInside = this->elemEquilRegion_[insideElemIdx];
unsigned equilRegionOutside = this->elemEquilRegion_[outsideElemIdx];
if (equilRegionInside == equilRegionOutside)
// the current face is not at the boundary between EQUIL regions!
continue;
const auto& problem = elemCtx.problem();
// don't include connections with negligible flow
const Evaluation& trans = simulator_.problem().transmissibility(elemCtx, i, j);
const Evaluation& trans = problem.transmissibility(elemCtx, i, j);
Scalar faceArea = face.area();
if (std::abs(faceArea*getValue(trans)) < 1e-18)
continue;
// determine the maximum difference of the pressure of any phase over the
// intersection
Scalar pth = 0.0;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0);
if (up.mobility(phaseIdx) > 0.0) {
Scalar phaseVal = Toolbox::value(extQuants.pressureDifference(phaseIdx));
pth = std::max(pth, std::abs(phaseVal));
}
}
double pth = calculateMaxDp(face, stencil, elemCtx, scvfIdx,
i, j,
insideElemIdx, outsideElemIdx);
// don't include connections with negligible flow
int offset1 = equilRegionInside*this->numEquilRegions_ + equilRegionOutside;
int offset2 = equilRegionOutside*this->numEquilRegions_ + equilRegionInside;

View File

@ -86,6 +86,9 @@ class EclTracerModel : public EclGenericTracerModel<GetPropType<TypeTag, Propert
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
using Eval = DenseAd::Evaluation<double, numEq>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
public:
EclTracerModel(Simulator& simulator)
: BaseType(simulator.vanguard().gridView(),
@ -224,7 +227,37 @@ protected:
freeVolume = phaseVolume * variable<LhsEval>(1.0, 0);
}
//template<class TypeTag>
void getVolumeFlux(unsigned& upIdx,
Scalar& v,
const FvBaseElementContext<TypeTag>& elemCtx,
const int tracerPhaseIdx,
unsigned scvfIdx
){
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx*/ 0);
upIdx = extQuants.upstreamIndex(tracerPhaseIdx);
v = decay<Scalar>(extQuants.volumeFlux(tracerPhaseIdx));
}
//template <class TypeTag>
void getVolumeFlux(unsigned& upIdx,
Scalar& v,
const SmallElementContext<TypeTag>& elemCtx,
const int tracerPhaseIdx,
unsigned scvfIdx
){
short upIdxV[numPhases];
Eval volumFlux[numPhases];
Eval pressureDifferences[numPhases];
ExtensiveQuantities::volumeAndPhasePressureDifferences(upIdxV ,
volumFlux,
pressureDifferences,
elemCtx,
scvfIdx,
/*timeIdx*/ 0);
v = decay<Scalar>(volumFlux[tracerPhaseIdx]);
upIdx = upIdxV[tracerPhaseIdx] ;
}
// evaluate the flux(es) over one face
void computeFlux_(TracerEvaluation & freeFlux,
bool & isUpFree,
@ -236,17 +269,18 @@ protected:
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned inIdx = extQuants.interiorIndex();
unsigned upIdx = extQuants.upstreamIndex(tracerPhaseIdx);
unsigned inIdx = scvf.interiorIndex();
unsigned upIdx;
Scalar v;
getVolumeFlux(upIdx,
v,
elemCtx,
tracerPhaseIdx,
scvfIdx);
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
const auto& fs = intQuants.fluidState();
Scalar A = scvf.area();
Scalar v = decay<Scalar>(extQuants.volumeFlux(tracerPhaseIdx));
Scalar b = decay<Scalar>(fs.invB(tracerPhaseIdx));
if (inIdx == upIdx) {
@ -397,7 +431,9 @@ protected:
auto elemIt = simulator_.gridView().template begin</*codim=*/0>();
auto elemEndIt = simulator_.gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateAll(*elemIt);
//elemCtx.updateAll(*elemIt);
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timIdx*/ 0.0);
int globalDofIdx = elemCtx.globalSpaceIndex(0, /*timIdx=*/0);
Scalar fVolume;
computeVolume_(fVolume, tr.phaseIdx_, elemCtx, 0, /*timIdx=*/0);

View File

@ -49,12 +49,14 @@ public:
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = FluidSystem::numPhases };
static const int numEq = BlackoilIndices::numEq;
using Eval = DenseAd::Evaluation<double, numEq>;
using Toolbox = MathToolbox<Eval>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
// Constructor
AquiferNumerical(const SingleNumericalAquifer& aquifer,
const std::unordered_map<int, int>& cartesian_to_compressed,
@ -250,6 +252,30 @@ private:
return sum_pressure_watervolume / sum_watervolume;
}
template<class ElemCtx>
const double getWaterFlux(ElemCtx& elem_ctx,unsigned face_idx) const{
const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const double water_flux = Toolbox::value(exQuants.volumeFlux(this->phaseIdx_()));
return water_flux;
}
const double getWaterFlux(SmallElementContext<TypeTag>& elem_ctx,unsigned face_idx) const{
short upIdx[numPhases];
Eval volumFlux[numPhases];
Eval pressureDifferences[numPhases];
ExtensiveQuantities::volumeAndPhasePressureDifferences(upIdx ,
volumFlux,
pressureDifferences,
elem_ctx,
face_idx,
/*timeIdx*/ 0);
return Toolbox::value(volumFlux[this->phaseIdx_()]);
}
double calculateAquiferFluxRate() const
{
double aquifer_flux = 0.0;
@ -276,9 +302,7 @@ private:
if (idx != 0) {
continue;
}
elem_ctx.updateAllIntensiveQuantities();
elem_ctx.updateAllExtensiveQuantities();
const std::size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
// const auto &problem = elem_ctx.problem();
const auto& stencil = elem_ctx.stencil(0);
@ -300,9 +324,11 @@ private:
if (this->cell_to_aquifer_cell_idx_[J] > 0) {
continue;
}
const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const double water_flux = Toolbox::value(exQuants.volumeFlux(this->phaseIdx_()));
elem_ctx.updateAllIntensiveQuantities();
elem_ctx.updateAllExtensiveQuantities();
const double water_flux = getWaterFlux(elem_ctx,face_idx);
const std::size_t up_id = water_flux >= 0.0 ? i : j;
const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
const double invB = Toolbox::value(intQuantsIn.fluidState().invB(this->phaseIdx_()));
@ -316,6 +342,7 @@ private:
return aquifer_flux;
}
};
} // namespace Opm
#endif